| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1mulgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
ply1mulgsum.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
| 4 |
|
ply1mulgsum.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
| 5 |
|
ply1mulgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 6 |
|
ply1mulgsum.pm |
⊢ × = ( .r ‘ 𝑃 ) |
| 7 |
|
ply1mulgsum.sm |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 8 |
|
ply1mulgsum.rm |
⊢ ∗ = ( .r ‘ 𝑅 ) |
| 9 |
|
ply1mulgsum.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
| 10 |
|
ply1mulgsum.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 11 |
1 6 8 2
|
coe1mul |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐾 × 𝐿 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐾 × 𝐿 ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) ) ) |
| 13 |
12
|
fveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐾 × 𝐿 ) ) ‘ 𝑛 ) = ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) ) ‘ 𝑛 ) ) |
| 14 |
|
eqidd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑚 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 0 ... 𝑚 ) = ( 0 ... 𝑛 ) ) |
| 16 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) = ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) |
| 18 |
15 17
|
mpteq12dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑚 = 𝑛 ) → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) ) |
| 21 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 22 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) ∈ V ) |
| 23 |
14 20 21 22
|
fvmptd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑚 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑚 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑚 − 𝑖 ) ) ) ) ) ) ‘ 𝑛 ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) ) |
| 24 |
9
|
fveq2i |
⊢ ( .g ‘ 𝑀 ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 25 |
10 24
|
eqtri |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 26 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 29 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 30 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑅 ∈ CMnd ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ CMnd ) |
| 33 |
|
fzfid |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 34 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
| 36 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝐾 ∈ 𝐵 ) |
| 37 |
36
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐾 ∈ 𝐵 ) |
| 38 |
|
elfznn0 |
⊢ ( 𝑙 ∈ ( 0 ... 𝑘 ) → 𝑙 ∈ ℕ0 ) |
| 39 |
3 2 1 28
|
coe1fvalcl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑙 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 |
37 38 39
|
syl2an |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
| 41 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝐿 ∈ 𝐵 ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐿 ∈ 𝐵 ) |
| 43 |
|
fznn0sub |
⊢ ( 𝑙 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑙 ) ∈ ℕ0 ) |
| 44 |
4 2 1 28
|
coe1fvalcl |
⊢ ( ( 𝐿 ∈ 𝐵 ∧ ( 𝑘 − 𝑙 ) ∈ ℕ0 ) → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 45 |
42 43 44
|
syl2an |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 46 |
28 8
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 47 |
35 40 45 46
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 48 |
47
|
ralrimiva |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 |
28 32 33 48
|
gsummptcl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 |
49
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 51 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 53 |
1 2 5 25 27 28 7 29 50 52 21
|
gsummoncoe1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) |
| 54 |
|
vex |
⊢ 𝑛 ∈ V |
| 55 |
|
csbov2g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) |
| 56 |
|
id |
⊢ ( 𝑛 ∈ V → 𝑛 ∈ V ) |
| 57 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) ) |
| 58 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) = ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) = ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) |
| 60 |
57 59
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑛 ∈ V ∧ 𝑘 = 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 62 |
56 61
|
csbied |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑛 ∈ V → ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 64 |
55 63
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 65 |
54 64
|
mp1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝐴 ‘ 𝑙 ) = ( 𝐴 ‘ 𝑖 ) ) |
| 67 |
3
|
fveq1i |
⊢ ( 𝐴 ‘ 𝑖 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) |
| 68 |
66 67
|
eqtrdi |
⊢ ( 𝑙 = 𝑖 → ( 𝐴 ‘ 𝑙 ) = ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ) |
| 69 |
|
oveq2 |
⊢ ( 𝑙 = 𝑖 → ( 𝑛 − 𝑙 ) = ( 𝑛 − 𝑖 ) ) |
| 70 |
69
|
fveq2d |
⊢ ( 𝑙 = 𝑖 → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( 𝐶 ‘ ( 𝑛 − 𝑖 ) ) ) |
| 71 |
4
|
fveq1i |
⊢ ( 𝐶 ‘ ( 𝑛 − 𝑖 ) ) = ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) |
| 72 |
70 71
|
eqtrdi |
⊢ ( 𝑙 = 𝑖 → ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) = ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) |
| 73 |
68 72
|
oveq12d |
⊢ ( 𝑙 = 𝑖 → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) = ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) |
| 74 |
73
|
cbvmptv |
⊢ ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) |
| 75 |
74
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) ) |
| 77 |
53 65 76
|
3eqtrrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑖 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ∗ ( ( coe1 ‘ 𝐿 ) ‘ ( 𝑛 − 𝑖 ) ) ) ) ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 78 |
13 23 77
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐾 × 𝐿 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 79 |
78
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝐾 × 𝐿 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
| 80 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 81 |
2 6
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 × 𝐿 ) ∈ 𝐵 ) |
| 82 |
80 81
|
syl3an1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 × 𝐿 ) ∈ 𝐵 ) |
| 83 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 84 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 85 |
80 84
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ CMnd ) |
| 86 |
85
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑃 ∈ CMnd ) |
| 87 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 88 |
87
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ℕ0 ∈ V ) |
| 89 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 90 |
89
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑃 ∈ LMod ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 92 |
31
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ CMnd ) |
| 93 |
|
fzfid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 94 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → 𝑅 ∈ Ring ) |
| 95 |
36
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐾 ∈ 𝐵 ) |
| 96 |
95 38 39
|
syl2an |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ‘ 𝑙 ) ∈ ( Base ‘ 𝑅 ) ) |
| 97 |
41
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐿 ∈ 𝐵 ) |
| 98 |
97 43 44
|
syl2an |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 99 |
94 96 98 46
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑙 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 100 |
99
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ( 0 ... 𝑘 ) ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 101 |
28 92 93 100
|
gsummptcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 102 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 103 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 104 |
102 103
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 105 |
104
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 106 |
101 105
|
eleqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 107 |
9 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 108 |
9
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
| 109 |
80 108
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 110 |
109
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑀 ∈ Mnd ) |
| 111 |
110
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
| 112 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 113 |
5 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 114 |
113
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 116 |
107 10 111 112 115
|
mulgnn0cld |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
| 117 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 118 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 119 |
2 117 7 118
|
lmodvscl |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 120 |
91 106 116 119
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 121 |
120
|
fmpttd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐵 ) |
| 122 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem4 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
| 123 |
2 83 86 88 121 122
|
gsumcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐵 ) |
| 124 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐾 × 𝐿 ) ) = ( coe1 ‘ ( 𝐾 × 𝐿 ) ) |
| 125 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 126 |
1 2 124 125
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐾 × 𝐿 ) ∈ 𝐵 ∧ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝐾 × 𝐿 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ↔ ( 𝐾 × 𝐿 ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 127 |
26 82 123 126
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝐾 × 𝐿 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ↔ ( 𝐾 × 𝐿 ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 128 |
79 127
|
mpbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 × 𝐿 ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) ) ) |