| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1mulgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
ply1mulgsum.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
| 4 |
|
ply1mulgsum.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
| 5 |
|
ply1mulgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 6 |
|
ply1mulgsum.pm |
⊢ × = ( .r ‘ 𝑃 ) |
| 7 |
|
ply1mulgsum.sm |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 8 |
|
ply1mulgsum.rm |
⊢ ∗ = ( .r ‘ 𝑅 ) |
| 9 |
|
ply1mulgsum.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
| 10 |
|
ply1mulgsum.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
| 11 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 0g ‘ 𝑃 ) ∈ V ) |
| 12 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ∈ V ) |
| 13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 14 |
|
vex |
⊢ 𝑛 ∈ V |
| 15 |
|
csbov12g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) ) |
| 16 |
|
csbov2g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) |
| 17 |
|
id |
⊢ ( 𝑛 ∈ V → 𝑛 ∈ V ) |
| 18 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) ) |
| 19 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) = ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) = ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) |
| 21 |
18 20
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑛 ∈ V ∧ 𝑘 = 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 23 |
17 22
|
csbied |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑛 ∈ V → ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 25 |
16 24
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
| 26 |
|
csbov1g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( ⦋ 𝑛 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) ) |
| 27 |
|
csbvarg |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ 𝑘 = 𝑛 ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝑛 ∈ V → ( ⦋ 𝑛 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) = ( 𝑛 ↑ 𝑋 ) ) |
| 29 |
26 28
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( 𝑛 ↑ 𝑋 ) ) |
| 30 |
25 29
|
oveq12d |
⊢ ( 𝑛 ∈ V → ( ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) ) |
| 31 |
15 30
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) ) |
| 32 |
14 31
|
ax-mp |
⊢ ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) |
| 33 |
|
oveq1 |
⊢ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑛 ↑ 𝑋 ) ) ) |
| 34 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 37 |
36
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 38 |
37
|
oveq1d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑛 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑛 ↑ 𝑋 ) ) ) |
| 39 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑃 ∈ LMod ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 42 |
9 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 43 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 44 |
9
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
| 45 |
43 44
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 46 |
45
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑀 ∈ Mnd ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
| 48 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 49 |
5 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 52 |
42 10 47 48 51
|
mulgnn0cld |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ 𝐵 ) |
| 53 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 54 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 55 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 56 |
2 53 7 54 55
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑛 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 57 |
41 52 56
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 58 |
38 57
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 59 |
33 58
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 60 |
32 59
|
eqtrid |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 61 |
60
|
ex |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 62 |
61
|
imim2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 63 |
62
|
ralimdva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 64 |
63
|
reximdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 65 |
13 64
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 66 |
11 12 65
|
mptnn0fsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |