Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1mulgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply1mulgsum.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
4 |
|
ply1mulgsum.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
5 |
|
ply1mulgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
ply1mulgsum.pm |
⊢ × = ( .r ‘ 𝑃 ) |
7 |
|
ply1mulgsum.sm |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
8 |
|
ply1mulgsum.rm |
⊢ ∗ = ( .r ‘ 𝑅 ) |
9 |
|
ply1mulgsum.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
10 |
|
ply1mulgsum.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
11 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 0g ‘ 𝑃 ) ∈ V ) |
12 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ∈ V ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
14 |
|
vex |
⊢ 𝑛 ∈ V |
15 |
|
csbov12g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) ) |
16 |
|
csbov2g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) |
17 |
|
id |
⊢ ( 𝑛 ∈ V → 𝑛 ∈ V ) |
18 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) ) |
19 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) = ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) = ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) |
21 |
18 20
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝑛 ∈ V ∧ 𝑘 = 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
23 |
17 22
|
csbied |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑛 ∈ V → ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
25 |
16 24
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
26 |
|
csbov1g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( ⦋ 𝑛 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) ) |
27 |
|
csbvarg |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ 𝑘 = 𝑛 ) |
28 |
27
|
oveq1d |
⊢ ( 𝑛 ∈ V → ( ⦋ 𝑛 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) = ( 𝑛 ↑ 𝑋 ) ) |
29 |
26 28
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( 𝑛 ↑ 𝑋 ) ) |
30 |
25 29
|
oveq12d |
⊢ ( 𝑛 ∈ V → ( ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ⦋ 𝑛 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) ) |
31 |
15 30
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) ) |
32 |
14 31
|
ax-mp |
⊢ ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) |
33 |
|
oveq1 |
⊢ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( ( 0g ‘ 𝑅 ) · ( 𝑛 ↑ 𝑋 ) ) ) |
34 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
37 |
36
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑛 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑛 ↑ 𝑋 ) ) ) |
39 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
40 |
39
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑃 ∈ LMod ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
42 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
43 |
9
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → 𝑀 ∈ Mnd ) |
44 |
42 43
|
syl |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
45 |
44
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑀 ∈ Mnd ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑀 ∈ Mnd ) |
47 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
48 |
5 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
51 |
9 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
52 |
51 10
|
mulgnn0cl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ↑ 𝑋 ) ∈ 𝐵 ) |
53 |
46 47 50 52
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ↑ 𝑋 ) ∈ 𝐵 ) |
54 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
55 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
56 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
57 |
2 54 7 55 56
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑛 ↑ 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
58 |
41 53 57
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
59 |
38 58
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 0g ‘ 𝑅 ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
60 |
33 59
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) · ( 𝑛 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
61 |
32 60
|
eqtrid |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
62 |
61
|
ex |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
63 |
62
|
imim2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
64 |
63
|
ralimdva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
65 |
64
|
reximdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
66 |
13 65
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
67 |
11 12 66
|
mptnn0fsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) · ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |