| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1mulgsum.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | ply1mulgsum.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | ply1mulgsum.a | ⊢ 𝐴  =  ( coe1 ‘ 𝐾 ) | 
						
							| 4 |  | ply1mulgsum.c | ⊢ 𝐶  =  ( coe1 ‘ 𝐿 ) | 
						
							| 5 |  | ply1mulgsum.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 6 |  | ply1mulgsum.pm | ⊢  ×   =  ( .r ‘ 𝑃 ) | 
						
							| 7 |  | ply1mulgsum.sm | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 8 |  | ply1mulgsum.rm | ⊢  ∗   =  ( .r ‘ 𝑅 ) | 
						
							| 9 |  | ply1mulgsum.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 10 |  | ply1mulgsum.e | ⊢  ↑   =  ( .g ‘ 𝑀 ) | 
						
							| 11 |  | fvexd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( 0g ‘ 𝑃 )  ∈  V ) | 
						
							| 12 |  | ovexd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  ∈  V ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 | ply1mulgsumlem2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 14 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 15 |  | csbov12g | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( ⦋ 𝑛  /  𝑘 ⦌ ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 16 |  | csbov2g | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  =  ( 𝑅  Σg  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) ) ) | 
						
							| 17 |  | id | ⊢ ( 𝑛  ∈  V  →  𝑛  ∈  V ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 0 ... 𝑘 )  =  ( 0 ... 𝑛 ) ) | 
						
							| 19 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) )  =  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) )  =  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) | 
						
							| 21 | 18 20 | mpteq12dv | ⊢ ( 𝑘  =  𝑛  →  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( 𝑛  ∈  V  ∧  𝑘  =  𝑛 )  →  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) ) | 
						
							| 23 | 17 22 | csbied | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) )  =  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑛  ∈  V  →  ( 𝑅  Σg  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) ) ) | 
						
							| 25 | 16 24 | eqtrd | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) ) ) | 
						
							| 26 |  | csbov1g | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( ⦋ 𝑛  /  𝑘 ⦌ 𝑘  ↑  𝑋 ) ) | 
						
							| 27 |  | csbvarg | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ 𝑘  =  𝑛 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝑛  ∈  V  →  ( ⦋ 𝑛  /  𝑘 ⦌ 𝑘  ↑  𝑋 )  =  ( 𝑛  ↑  𝑋 ) ) | 
						
							| 29 | 26 28 | eqtrd | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 )  =  ( 𝑛  ↑  𝑋 ) ) | 
						
							| 30 | 25 29 | oveq12d | ⊢ ( 𝑛  ∈  V  →  ( ⦋ 𝑛  /  𝑘 ⦌ ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ⦋ 𝑛  /  𝑘 ⦌ ( 𝑘  ↑  𝑋 ) )  =  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  ·  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 31 | 15 30 | eqtrd | ⊢ ( 𝑛  ∈  V  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  ·  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 32 | 14 31 | ax-mp | ⊢ ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  ·  ( 𝑛  ↑  𝑋 ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 )  →  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  ·  ( 𝑛  ↑  𝑋 ) )  =  ( ( 0g ‘ 𝑅 )  ·  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 34 | 1 | ply1sca | ⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 36 | 35 | ad2antrr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 0g ‘ 𝑅 )  ·  ( 𝑛  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 39 | 1 | ply1lmod | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod ) | 
						
							| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  𝑃  ∈  LMod ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝑃  ∈  LMod ) | 
						
							| 42 | 9 2 | mgpbas | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 43 | 1 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 44 | 9 | ringmgp | ⊢ ( 𝑃  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝑅  ∈  Ring  →  𝑀  ∈  Mnd ) | 
						
							| 46 | 45 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  𝑀  ∈  Mnd ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝑀  ∈  Mnd ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 49 | 5 1 2 | vr1cl | ⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  𝐵 ) | 
						
							| 50 | 49 | 3ad2ant1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 51 | 50 | ad2antrr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  𝑋  ∈  𝐵 ) | 
						
							| 52 | 42 10 47 48 51 | mulgnn0cld | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  𝐵 ) | 
						
							| 53 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 54 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 55 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 56 | 2 53 7 54 55 | lmod0vs | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  𝐵 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 57 | 41 52 56 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 58 | 38 57 | eqtrd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 0g ‘ 𝑅 )  ·  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 59 | 33 58 | sylan9eqr | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  ·  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 60 | 32 59 | eqtrid | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 )  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 62 | 61 | imim2d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑛  →  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑠  <  𝑛  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 63 | 62 | ralimdva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  ∧  𝑠  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 64 | 63 | reximdva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑛  −  𝑙 ) ) ) ) )  =  ( 0g ‘ 𝑅 ) )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 65 | 13 64 | mpd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ⦋ 𝑛  /  𝑘 ⦌ ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) )  =  ( 0g ‘ 𝑃 ) ) ) | 
						
							| 66 | 11 12 65 | mptnn0fsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐾  ∈  𝐵  ∧  𝐿  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑅  Σg  ( 𝑙  ∈  ( 0 ... 𝑘 )  ↦  ( ( 𝐴 ‘ 𝑙 )  ∗  ( 𝐶 ‘ ( 𝑘  −  𝑙 ) ) ) ) )  ·  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑃 ) ) |