Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|
2 |
|
ply1mulgsum.b |
|
3 |
|
ply1mulgsum.a |
|
4 |
|
ply1mulgsum.c |
|
5 |
|
ply1mulgsum.x |
|
6 |
|
ply1mulgsum.pm |
|
7 |
|
ply1mulgsum.sm |
|
8 |
|
ply1mulgsum.rm |
|
9 |
|
ply1mulgsum.m |
|
10 |
|
ply1mulgsum.e |
|
11 |
|
fvexd |
|
12 |
|
ovexd |
|
13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
|
14 |
|
vex |
|
15 |
|
csbov12g |
|
16 |
|
csbov2g |
|
17 |
|
id |
|
18 |
|
oveq2 |
|
19 |
|
fvoveq1 |
|
20 |
19
|
oveq2d |
|
21 |
18 20
|
mpteq12dv |
|
22 |
21
|
adantl |
|
23 |
17 22
|
csbied |
|
24 |
23
|
oveq2d |
|
25 |
16 24
|
eqtrd |
|
26 |
|
csbov1g |
|
27 |
|
csbvarg |
|
28 |
27
|
oveq1d |
|
29 |
26 28
|
eqtrd |
|
30 |
25 29
|
oveq12d |
|
31 |
15 30
|
eqtrd |
|
32 |
14 31
|
ax-mp |
|
33 |
|
oveq1 |
|
34 |
1
|
ply1sca |
|
35 |
34
|
3ad2ant1 |
|
36 |
35
|
ad2antrr |
|
37 |
36
|
fveq2d |
|
38 |
37
|
oveq1d |
|
39 |
1
|
ply1lmod |
|
40 |
39
|
3ad2ant1 |
|
41 |
40
|
ad2antrr |
|
42 |
1
|
ply1ring |
|
43 |
9
|
ringmgp |
|
44 |
42 43
|
syl |
|
45 |
44
|
3ad2ant1 |
|
46 |
45
|
ad2antrr |
|
47 |
|
simpr |
|
48 |
5 1 2
|
vr1cl |
|
49 |
48
|
3ad2ant1 |
|
50 |
49
|
ad2antrr |
|
51 |
9 2
|
mgpbas |
|
52 |
51 10
|
mulgnn0cl |
|
53 |
46 47 50 52
|
syl3anc |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
2 54 7 55 56
|
lmod0vs |
|
58 |
41 53 57
|
syl2anc |
|
59 |
38 58
|
eqtrd |
|
60 |
33 59
|
sylan9eqr |
|
61 |
32 60
|
syl5eq |
|
62 |
61
|
ex |
|
63 |
62
|
imim2d |
|
64 |
63
|
ralimdva |
|
65 |
64
|
reximdva |
|
66 |
13 65
|
mpd |
|
67 |
11 12 66
|
mptnn0fsupp |
|