Metamath Proof Explorer


Theorem ply1mulgsumlem4

Description: Lemma 4 for ply1mulgsum . (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P = Poly 1 R
ply1mulgsum.b B = Base P
ply1mulgsum.a A = coe 1 K
ply1mulgsum.c C = coe 1 L
ply1mulgsum.x X = var 1 R
ply1mulgsum.pm × ˙ = P
ply1mulgsum.sm · ˙ = P
ply1mulgsum.rm ˙ = R
ply1mulgsum.m M = mulGrp P
ply1mulgsum.e × ˙ = M
Assertion ply1mulgsumlem4 R Ring K B L B finSupp 0 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P = Poly 1 R
2 ply1mulgsum.b B = Base P
3 ply1mulgsum.a A = coe 1 K
4 ply1mulgsum.c C = coe 1 L
5 ply1mulgsum.x X = var 1 R
6 ply1mulgsum.pm × ˙ = P
7 ply1mulgsum.sm · ˙ = P
8 ply1mulgsum.rm ˙ = R
9 ply1mulgsum.m M = mulGrp P
10 ply1mulgsum.e × ˙ = M
11 fvexd R Ring K B L B 0 P V
12 ovexd R Ring K B L B k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X V
13 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem2 R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R
14 vex n V
15 csbov12g n V n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = n / k R l = 0 k A l ˙ C k l · ˙ n / k k × ˙ X
16 csbov2g n V n / k R l = 0 k A l ˙ C k l = R n / k l 0 k A l ˙ C k l
17 id n V n V
18 oveq2 k = n 0 k = 0 n
19 fvoveq1 k = n C k l = C n l
20 19 oveq2d k = n A l ˙ C k l = A l ˙ C n l
21 18 20 mpteq12dv k = n l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
22 21 adantl n V k = n l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
23 17 22 csbied n V n / k l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
24 23 oveq2d n V R n / k l 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
25 16 24 eqtrd n V n / k R l = 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
26 csbov1g n V n / k k × ˙ X = n / k k × ˙ X
27 csbvarg n V n / k k = n
28 27 oveq1d n V n / k k × ˙ X = n × ˙ X
29 26 28 eqtrd n V n / k k × ˙ X = n × ˙ X
30 25 29 oveq12d n V n / k R l = 0 k A l ˙ C k l · ˙ n / k k × ˙ X = R l = 0 n A l ˙ C n l · ˙ n × ˙ X
31 15 30 eqtrd n V n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = R l = 0 n A l ˙ C n l · ˙ n × ˙ X
32 14 31 ax-mp n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = R l = 0 n A l ˙ C n l · ˙ n × ˙ X
33 oveq1 R l = 0 n A l ˙ C n l = 0 R R l = 0 n A l ˙ C n l · ˙ n × ˙ X = 0 R · ˙ n × ˙ X
34 1 ply1sca R Ring R = Scalar P
35 34 3ad2ant1 R Ring K B L B R = Scalar P
36 35 ad2antrr R Ring K B L B s 0 n 0 R = Scalar P
37 36 fveq2d R Ring K B L B s 0 n 0 0 R = 0 Scalar P
38 37 oveq1d R Ring K B L B s 0 n 0 0 R · ˙ n × ˙ X = 0 Scalar P · ˙ n × ˙ X
39 1 ply1lmod R Ring P LMod
40 39 3ad2ant1 R Ring K B L B P LMod
41 40 ad2antrr R Ring K B L B s 0 n 0 P LMod
42 9 2 mgpbas B = Base M
43 1 ply1ring R Ring P Ring
44 9 ringmgp P Ring M Mnd
45 43 44 syl R Ring M Mnd
46 45 3ad2ant1 R Ring K B L B M Mnd
47 46 ad2antrr R Ring K B L B s 0 n 0 M Mnd
48 simpr R Ring K B L B s 0 n 0 n 0
49 5 1 2 vr1cl R Ring X B
50 49 3ad2ant1 R Ring K B L B X B
51 50 ad2antrr R Ring K B L B s 0 n 0 X B
52 42 10 47 48 51 mulgnn0cld R Ring K B L B s 0 n 0 n × ˙ X B
53 eqid Scalar P = Scalar P
54 eqid 0 Scalar P = 0 Scalar P
55 eqid 0 P = 0 P
56 2 53 7 54 55 lmod0vs P LMod n × ˙ X B 0 Scalar P · ˙ n × ˙ X = 0 P
57 41 52 56 syl2anc R Ring K B L B s 0 n 0 0 Scalar P · ˙ n × ˙ X = 0 P
58 38 57 eqtrd R Ring K B L B s 0 n 0 0 R · ˙ n × ˙ X = 0 P
59 33 58 sylan9eqr R Ring K B L B s 0 n 0 R l = 0 n A l ˙ C n l = 0 R R l = 0 n A l ˙ C n l · ˙ n × ˙ X = 0 P
60 32 59 eqtrid R Ring K B L B s 0 n 0 R l = 0 n A l ˙ C n l = 0 R n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = 0 P
61 60 ex R Ring K B L B s 0 n 0 R l = 0 n A l ˙ C n l = 0 R n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = 0 P
62 61 imim2d R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R s < n n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = 0 P
63 62 ralimdva R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R n 0 s < n n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = 0 P
64 63 reximdva R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R s 0 n 0 s < n n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = 0 P
65 13 64 mpd R Ring K B L B s 0 n 0 s < n n / k R l = 0 k A l ˙ C k l · ˙ k × ˙ X = 0 P
66 11 12 65 mptnn0fsupp R Ring K B L B finSupp 0 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X