| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
|
| 2 |
|
ply1mulgsum.b |
|
| 3 |
|
ply1mulgsum.a |
|
| 4 |
|
ply1mulgsum.c |
|
| 5 |
|
ply1mulgsum.x |
|
| 6 |
|
ply1mulgsum.pm |
|
| 7 |
|
ply1mulgsum.sm |
|
| 8 |
|
ply1mulgsum.rm |
|
| 9 |
|
ply1mulgsum.m |
|
| 10 |
|
ply1mulgsum.e |
|
| 11 |
|
fvexd |
|
| 12 |
|
ovexd |
|
| 13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
|
| 14 |
|
vex |
|
| 15 |
|
csbov12g |
|
| 16 |
|
csbov2g |
|
| 17 |
|
id |
|
| 18 |
|
oveq2 |
|
| 19 |
|
fvoveq1 |
|
| 20 |
19
|
oveq2d |
|
| 21 |
18 20
|
mpteq12dv |
|
| 22 |
21
|
adantl |
|
| 23 |
17 22
|
csbied |
|
| 24 |
23
|
oveq2d |
|
| 25 |
16 24
|
eqtrd |
|
| 26 |
|
csbov1g |
|
| 27 |
|
csbvarg |
|
| 28 |
27
|
oveq1d |
|
| 29 |
26 28
|
eqtrd |
|
| 30 |
25 29
|
oveq12d |
|
| 31 |
15 30
|
eqtrd |
|
| 32 |
14 31
|
ax-mp |
|
| 33 |
|
oveq1 |
|
| 34 |
1
|
ply1sca |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
36
|
fveq2d |
|
| 38 |
37
|
oveq1d |
|
| 39 |
1
|
ply1lmod |
|
| 40 |
39
|
3ad2ant1 |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
9 2
|
mgpbas |
|
| 43 |
1
|
ply1ring |
|
| 44 |
9
|
ringmgp |
|
| 45 |
43 44
|
syl |
|
| 46 |
45
|
3ad2ant1 |
|
| 47 |
46
|
ad2antrr |
|
| 48 |
|
simpr |
|
| 49 |
5 1 2
|
vr1cl |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
42 10 47 48 51
|
mulgnn0cld |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
2 53 7 54 55
|
lmod0vs |
|
| 57 |
41 52 56
|
syl2anc |
|
| 58 |
38 57
|
eqtrd |
|
| 59 |
33 58
|
sylan9eqr |
|
| 60 |
32 59
|
eqtrid |
|
| 61 |
60
|
ex |
|
| 62 |
61
|
imim2d |
|
| 63 |
62
|
ralimdva |
|
| 64 |
63
|
reximdva |
|
| 65 |
13 64
|
mpd |
|
| 66 |
11 12 65
|
mptnn0fsupp |
|