Metamath Proof Explorer


Theorem ply1mulgsumlem2

Description: Lemma 2 for ply1mulgsum . (Contributed by AV, 19-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P = Poly 1 R
ply1mulgsum.b B = Base P
ply1mulgsum.a A = coe 1 K
ply1mulgsum.c C = coe 1 L
ply1mulgsum.x X = var 1 R
ply1mulgsum.pm × ˙ = P
ply1mulgsum.sm · ˙ = P
ply1mulgsum.rm ˙ = R
ply1mulgsum.m M = mulGrp P
ply1mulgsum.e × ˙ = M
Assertion ply1mulgsumlem2 R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P = Poly 1 R
2 ply1mulgsum.b B = Base P
3 ply1mulgsum.a A = coe 1 K
4 ply1mulgsum.c C = coe 1 L
5 ply1mulgsum.x X = var 1 R
6 ply1mulgsum.pm × ˙ = P
7 ply1mulgsum.sm · ˙ = P
8 ply1mulgsum.rm ˙ = R
9 ply1mulgsum.m M = mulGrp P
10 ply1mulgsum.e × ˙ = M
11 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem1 R Ring K B L B z 0 x 0 z < x A x = 0 R C x = 0 R
12 2nn0 2 0
13 12 a1i z 0 2 0
14 id z 0 z 0
15 13 14 nn0mulcld z 0 2 z 0
16 15 ad2antrr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B 2 z 0
17 breq1 s = 2 z s < n 2 z < n
18 17 imbi1d s = 2 z s < n R l = 0 n A l ˙ C n l = 0 R 2 z < n R l = 0 n A l ˙ C n l = 0 R
19 18 ralbidv s = 2 z n 0 s < n R l = 0 n A l ˙ C n l = 0 R n 0 2 z < n R l = 0 n A l ˙ C n l = 0 R
20 19 adantl z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B s = 2 z n 0 s < n R l = 0 n A l ˙ C n l = 0 R n 0 2 z < n R l = 0 n A l ˙ C n l = 0 R
21 2re 2
22 21 a1i z 0 2
23 nn0re z 0 z
24 22 23 remulcld z 0 2 z
25 24 ad2antrr z 0 n 0 l 0 n 2 z
26 nn0re n 0 n
27 26 adantl z 0 n 0 n
28 27 adantr z 0 n 0 l 0 n n
29 elfznn0 l 0 n l 0
30 nn0re l 0 l
31 29 30 syl l 0 n l
32 31 adantl z 0 n 0 l 0 n l
33 25 28 32 ltsub1d z 0 n 0 l 0 n 2 z < n 2 z l < n l
34 23 ad2antrr z 0 n 0 l 0 n z
35 32 34 25 lesub2d z 0 n 0 l 0 n l z 2 z z 2 z l
36 35 adantr z 0 n 0 l 0 n 2 z l < n l l z 2 z z 2 z l
37 24 23 resubcld z 0 2 z z
38 37 ad2antrr z 0 n 0 l 0 n 2 z z
39 24 adantr z 0 n 0 2 z
40 resubcl 2 z l 2 z l
41 39 31 40 syl2an z 0 n 0 l 0 n 2 z l
42 resubcl n l n l
43 27 31 42 syl2an z 0 n 0 l 0 n n l
44 lelttr 2 z z 2 z l n l 2 z z 2 z l 2 z l < n l 2 z z < n l
45 38 41 43 44 syl3anc z 0 n 0 l 0 n 2 z z 2 z l 2 z l < n l 2 z z < n l
46 nn0cn z 0 z
47 2txmxeqx z 2 z z = z
48 46 47 syl z 0 2 z z = z
49 48 ad2antrr z 0 n 0 l 0 n 2 z z = z
50 49 breq1d z 0 n 0 l 0 n 2 z z < n l z < n l
51 45 50 sylibd z 0 n 0 l 0 n 2 z z 2 z l 2 z l < n l z < n l
52 51 expcomd z 0 n 0 l 0 n 2 z l < n l 2 z z 2 z l z < n l
53 52 imp z 0 n 0 l 0 n 2 z l < n l 2 z z 2 z l z < n l
54 36 53 sylbid z 0 n 0 l 0 n 2 z l < n l l z z < n l
55 54 ex z 0 n 0 l 0 n 2 z l < n l l z z < n l
56 33 55 sylbid z 0 n 0 l 0 n 2 z < n l z z < n l
57 56 ex z 0 n 0 l 0 n 2 z < n l z z < n l
58 57 com23 z 0 n 0 2 z < n l 0 n l z z < n l
59 58 ex z 0 n 0 2 z < n l 0 n l z z < n l
60 59 ad2antrr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n l z z < n l
61 60 imp41 z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n l z z < n l
62 61 impcom l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n z < n l
63 fznn0sub2 l 0 n n l 0 n
64 elfznn0 n l 0 n n l 0
65 breq2 x = n l z < x z < n l
66 fveqeq2 x = n l A x = 0 R A n l = 0 R
67 fveqeq2 x = n l C x = 0 R C n l = 0 R
68 66 67 anbi12d x = n l A x = 0 R C x = 0 R A n l = 0 R C n l = 0 R
69 65 68 imbi12d x = n l z < x A x = 0 R C x = 0 R z < n l A n l = 0 R C n l = 0 R
70 69 rspcva n l 0 x 0 z < x A x = 0 R C x = 0 R z < n l A n l = 0 R C n l = 0 R
71 simpr A n l = 0 R C n l = 0 R C n l = 0 R
72 70 71 syl6 n l 0 x 0 z < x A x = 0 R C x = 0 R z < n l C n l = 0 R
73 72 ex n l 0 x 0 z < x A x = 0 R C x = 0 R z < n l C n l = 0 R
74 63 64 73 3syl l 0 n x 0 z < x A x = 0 R C x = 0 R z < n l C n l = 0 R
75 74 com12 x 0 z < x A x = 0 R C x = 0 R l 0 n z < n l C n l = 0 R
76 75 ad4antlr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n z < n l C n l = 0 R
77 76 imp z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n z < n l C n l = 0 R
78 77 adantl l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n z < n l C n l = 0 R
79 62 78 mpd l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n C n l = 0 R
80 79 oveq2d l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ C n l = A l ˙ 0 R
81 simplr1 z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 R Ring
82 81 ad2antrr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n R Ring
83 82 adantl l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n R Ring
84 simplr2 z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 K B
85 84 adantr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n K B
86 85 29 anim12i z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n K B l 0
87 86 adantl l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n K B l 0
88 eqid Base R = Base R
89 3 2 1 88 coe1fvalcl K B l 0 A l Base R
90 87 89 syl l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l Base R
91 eqid 0 R = 0 R
92 88 8 91 ringrz R Ring A l Base R A l ˙ 0 R = 0 R
93 83 90 92 syl2anc l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ 0 R = 0 R
94 80 93 eqtrd l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ C n l = 0 R
95 ltnle z l z < l ¬ l z
96 23 30 95 syl2an z 0 l 0 z < l ¬ l z
97 96 bicomd z 0 l 0 ¬ l z z < l
98 97 expcom l 0 z 0 ¬ l z z < l
99 98 29 syl11 z 0 l 0 n ¬ l z z < l
100 99 ad4antr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n ¬ l z z < l
101 100 imp z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n ¬ l z z < l
102 breq2 x = l z < x z < l
103 fveqeq2 x = l A x = 0 R A l = 0 R
104 fveqeq2 x = l C x = 0 R C l = 0 R
105 103 104 anbi12d x = l A x = 0 R C x = 0 R A l = 0 R C l = 0 R
106 102 105 imbi12d x = l z < x A x = 0 R C x = 0 R z < l A l = 0 R C l = 0 R
107 106 rspcva l 0 x 0 z < x A x = 0 R C x = 0 R z < l A l = 0 R C l = 0 R
108 simpl A l = 0 R C l = 0 R A l = 0 R
109 107 108 syl6 l 0 x 0 z < x A x = 0 R C x = 0 R z < l A l = 0 R
110 109 ex l 0 x 0 z < x A x = 0 R C x = 0 R z < l A l = 0 R
111 110 29 syl11 x 0 z < x A x = 0 R C x = 0 R l 0 n z < l A l = 0 R
112 111 ad4antlr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n z < l A l = 0 R
113 112 imp z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n z < l A l = 0 R
114 101 113 sylbid z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n ¬ l z A l = 0 R
115 114 impcom ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l = 0 R
116 115 oveq1d ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ C n l = 0 R ˙ C n l
117 82 adantl ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n R Ring
118 simplr3 z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 L B
119 118 adantr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n L B
120 fznn0sub l 0 n n l 0
121 119 120 anim12i z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n L B n l 0
122 121 adantl ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n L B n l 0
123 4 2 1 88 coe1fvalcl L B n l 0 C n l Base R
124 122 123 syl ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n C n l Base R
125 88 8 91 ringlz R Ring C n l Base R 0 R ˙ C n l = 0 R
126 117 124 125 syl2anc ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n 0 R ˙ C n l = 0 R
127 116 126 eqtrd ¬ l z z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ C n l = 0 R
128 94 127 pm2.61ian z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ C n l = 0 R
129 128 mpteq2dva z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n l 0 n A l ˙ C n l = l 0 n 0 R
130 129 oveq2d z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n R l = 0 n A l ˙ C n l = R l = 0 n 0 R
131 ringmnd R Ring R Mnd
132 131 3ad2ant1 R Ring K B L B R Mnd
133 ovex 0 n V
134 132 133 jctir R Ring K B L B R Mnd 0 n V
135 134 ad3antlr z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n R Mnd 0 n V
136 91 gsumz R Mnd 0 n V R l = 0 n 0 R = 0 R
137 135 136 syl z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n R l = 0 n 0 R = 0 R
138 130 137 eqtrd z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n R l = 0 n A l ˙ C n l = 0 R
139 138 ex z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n R l = 0 n A l ˙ C n l = 0 R
140 139 ralrimiva z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B n 0 2 z < n R l = 0 n A l ˙ C n l = 0 R
141 16 20 140 rspcedvd z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R
142 141 ex z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R
143 142 rexlimiva z 0 x 0 z < x A x = 0 R C x = 0 R R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R
144 11 143 mpcom R Ring K B L B s 0 n 0 s < n R l = 0 n A l ˙ C n l = 0 R