Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|
2 |
|
ply1mulgsum.b |
|
3 |
|
ply1mulgsum.a |
|
4 |
|
ply1mulgsum.c |
|
5 |
|
ply1mulgsum.x |
|
6 |
|
ply1mulgsum.pm |
|
7 |
|
ply1mulgsum.sm |
|
8 |
|
ply1mulgsum.rm |
|
9 |
|
ply1mulgsum.m |
|
10 |
|
ply1mulgsum.e |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem1 |
|
12 |
|
2nn0 |
|
13 |
12
|
a1i |
|
14 |
|
id |
|
15 |
13 14
|
nn0mulcld |
|
16 |
15
|
ad2antrr |
|
17 |
|
breq1 |
|
18 |
17
|
imbi1d |
|
19 |
18
|
ralbidv |
|
20 |
19
|
adantl |
|
21 |
|
2re |
|
22 |
21
|
a1i |
|
23 |
|
nn0re |
|
24 |
22 23
|
remulcld |
|
25 |
24
|
ad2antrr |
|
26 |
|
nn0re |
|
27 |
26
|
adantl |
|
28 |
27
|
adantr |
|
29 |
|
elfznn0 |
|
30 |
|
nn0re |
|
31 |
29 30
|
syl |
|
32 |
31
|
adantl |
|
33 |
25 28 32
|
ltsub1d |
|
34 |
23
|
ad2antrr |
|
35 |
32 34 25
|
lesub2d |
|
36 |
35
|
adantr |
|
37 |
24 23
|
resubcld |
|
38 |
37
|
ad2antrr |
|
39 |
24
|
adantr |
|
40 |
|
resubcl |
|
41 |
39 31 40
|
syl2an |
|
42 |
|
resubcl |
|
43 |
27 31 42
|
syl2an |
|
44 |
|
lelttr |
|
45 |
38 41 43 44
|
syl3anc |
|
46 |
|
nn0cn |
|
47 |
|
2txmxeqx |
|
48 |
46 47
|
syl |
|
49 |
48
|
ad2antrr |
|
50 |
49
|
breq1d |
|
51 |
45 50
|
sylibd |
|
52 |
51
|
expcomd |
|
53 |
52
|
imp |
|
54 |
36 53
|
sylbid |
|
55 |
54
|
ex |
|
56 |
33 55
|
sylbid |
|
57 |
56
|
ex |
|
58 |
57
|
com23 |
|
59 |
58
|
ex |
|
60 |
59
|
ad2antrr |
|
61 |
60
|
imp41 |
|
62 |
61
|
impcom |
|
63 |
|
fznn0sub2 |
|
64 |
|
elfznn0 |
|
65 |
|
breq2 |
|
66 |
|
fveqeq2 |
|
67 |
|
fveqeq2 |
|
68 |
66 67
|
anbi12d |
|
69 |
65 68
|
imbi12d |
|
70 |
69
|
rspcva |
|
71 |
|
simpr |
|
72 |
70 71
|
syl6 |
|
73 |
72
|
ex |
|
74 |
63 64 73
|
3syl |
|
75 |
74
|
com12 |
|
76 |
75
|
ad4antlr |
|
77 |
76
|
imp |
|
78 |
77
|
adantl |
|
79 |
62 78
|
mpd |
|
80 |
79
|
oveq2d |
|
81 |
|
simplr1 |
|
82 |
81
|
ad2antrr |
|
83 |
82
|
adantl |
|
84 |
|
simplr2 |
|
85 |
84
|
adantr |
|
86 |
85 29
|
anim12i |
|
87 |
86
|
adantl |
|
88 |
|
eqid |
|
89 |
3 2 1 88
|
coe1fvalcl |
|
90 |
87 89
|
syl |
|
91 |
|
eqid |
|
92 |
88 8 91
|
ringrz |
|
93 |
83 90 92
|
syl2anc |
|
94 |
80 93
|
eqtrd |
|
95 |
|
ltnle |
|
96 |
23 30 95
|
syl2an |
|
97 |
96
|
bicomd |
|
98 |
97
|
expcom |
|
99 |
98 29
|
syl11 |
|
100 |
99
|
ad4antr |
|
101 |
100
|
imp |
|
102 |
|
breq2 |
|
103 |
|
fveqeq2 |
|
104 |
|
fveqeq2 |
|
105 |
103 104
|
anbi12d |
|
106 |
102 105
|
imbi12d |
|
107 |
106
|
rspcva |
|
108 |
|
simpl |
|
109 |
107 108
|
syl6 |
|
110 |
109
|
ex |
|
111 |
110 29
|
syl11 |
|
112 |
111
|
ad4antlr |
|
113 |
112
|
imp |
|
114 |
101 113
|
sylbid |
|
115 |
114
|
impcom |
|
116 |
115
|
oveq1d |
|
117 |
82
|
adantl |
|
118 |
|
simplr3 |
|
119 |
118
|
adantr |
|
120 |
|
fznn0sub |
|
121 |
119 120
|
anim12i |
|
122 |
121
|
adantl |
|
123 |
4 2 1 88
|
coe1fvalcl |
|
124 |
122 123
|
syl |
|
125 |
88 8 91
|
ringlz |
|
126 |
117 124 125
|
syl2anc |
|
127 |
116 126
|
eqtrd |
|
128 |
94 127
|
pm2.61ian |
|
129 |
128
|
mpteq2dva |
|
130 |
129
|
oveq2d |
|
131 |
|
ringmnd |
|
132 |
131
|
3ad2ant1 |
|
133 |
|
ovex |
|
134 |
132 133
|
jctir |
|
135 |
134
|
ad3antlr |
|
136 |
91
|
gsumz |
|
137 |
135 136
|
syl |
|
138 |
130 137
|
eqtrd |
|
139 |
138
|
ex |
|
140 |
139
|
ralrimiva |
|
141 |
16 20 140
|
rspcedvd |
|
142 |
141
|
ex |
|
143 |
142
|
rexlimiva |
|
144 |
11 143
|
mpcom |
|