Metamath Proof Explorer


Theorem evl1at0

Description: Polynomial evaluation for the 0 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o 𝑂 = ( eval1𝑅 )
evl1at0.p 𝑃 = ( Poly1𝑅 )
evl1at0.0 0 = ( 0g𝑅 )
evl1at0.z 𝑍 = ( 0g𝑃 )
Assertion evl1at0 ( 𝑅 ∈ CRing → ( ( 𝑂𝑍 ) ‘ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 evl1at0.o 𝑂 = ( eval1𝑅 )
2 evl1at0.p 𝑃 = ( Poly1𝑅 )
3 evl1at0.0 0 = ( 0g𝑅 )
4 evl1at0.z 𝑍 = ( 0g𝑃 )
5 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
6 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
7 2 6 3 4 ply1scl0 ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ 0 ) = 𝑍 )
8 5 7 syl ( 𝑅 ∈ CRing → ( ( algSc ‘ 𝑃 ) ‘ 0 ) = 𝑍 )
9 8 eqcomd ( 𝑅 ∈ CRing → 𝑍 = ( ( algSc ‘ 𝑃 ) ‘ 0 ) )
10 9 fveq2d ( 𝑅 ∈ CRing → ( 𝑂𝑍 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) )
11 10 fveq1d ( 𝑅 ∈ CRing → ( ( 𝑂𝑍 ) ‘ 0 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ‘ 0 ) )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
14 id ( 𝑅 ∈ CRing → 𝑅 ∈ CRing )
15 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
16 12 3 grpidcl ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) )
17 5 15 16 3syl ( 𝑅 ∈ CRing → 0 ∈ ( Base ‘ 𝑅 ) )
18 1 2 12 6 13 14 17 17 evl1scad ( 𝑅 ∈ CRing → ( ( ( algSc ‘ 𝑃 ) ‘ 0 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ‘ 0 ) = 0 ) )
19 18 simprd ( 𝑅 ∈ CRing → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ‘ 0 ) = 0 )
20 11 19 eqtrd ( 𝑅 ∈ CRing → ( ( 𝑂𝑍 ) ‘ 0 ) = 0 )