| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1at0.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1at0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
evl1at0.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
evl1at0.z |
⊢ 𝑍 = ( 0g ‘ 𝑃 ) |
| 5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 6 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 7 |
2 6 3 4
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ 0 ) = 𝑍 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝑅 ∈ CRing → ( ( algSc ‘ 𝑃 ) ‘ 0 ) = 𝑍 ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝑅 ∈ CRing → 𝑍 = ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑍 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ) |
| 11 |
10
|
fveq1d |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑂 ‘ 𝑍 ) ‘ 0 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ‘ 0 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 14 |
|
id |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ CRing ) |
| 15 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 16 |
12 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 17 |
5 15 16
|
3syl |
⊢ ( 𝑅 ∈ CRing → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
1 2 12 6 13 14 17 17
|
evl1scad |
⊢ ( 𝑅 ∈ CRing → ( ( ( algSc ‘ 𝑃 ) ‘ 0 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ‘ 0 ) = 0 ) ) |
| 19 |
18
|
simprd |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 0 ) ) ‘ 0 ) = 0 ) |
| 20 |
11 19
|
eqtrd |
⊢ ( 𝑅 ∈ CRing → ( ( 𝑂 ‘ 𝑍 ) ‘ 0 ) = 0 ) |