| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1at0.o | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 2 |  | evl1at0.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | evl1at0.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | evl1at0.z | ⊢ 𝑍  =  ( 0g ‘ 𝑃 ) | 
						
							| 5 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | eqid | ⊢ ( algSc ‘ 𝑃 )  =  ( algSc ‘ 𝑃 ) | 
						
							| 7 | 2 6 3 4 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( ( algSc ‘ 𝑃 ) ‘  0  )  =  𝑍 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝑅  ∈  CRing  →  ( ( algSc ‘ 𝑃 ) ‘  0  )  =  𝑍 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝑅  ∈  CRing  →  𝑍  =  ( ( algSc ‘ 𝑃 ) ‘  0  ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑂 ‘ 𝑍 )  =  ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘  0  ) ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝑅  ∈  CRing  →  ( ( 𝑂 ‘ 𝑍 ) ‘  0  )  =  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘  0  ) ) ‘  0  ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | id | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  CRing ) | 
						
							| 15 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 16 | 12 3 | grpidcl | ⊢ ( 𝑅  ∈  Grp  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 5 15 16 | 3syl | ⊢ ( 𝑅  ∈  CRing  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 1 2 12 6 13 14 17 17 | evl1scad | ⊢ ( 𝑅  ∈  CRing  →  ( ( ( algSc ‘ 𝑃 ) ‘  0  )  ∈  ( Base ‘ 𝑃 )  ∧  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘  0  ) ) ‘  0  )  =   0  ) ) | 
						
							| 19 | 18 | simprd | ⊢ ( 𝑅  ∈  CRing  →  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘  0  ) ) ‘  0  )  =   0  ) | 
						
							| 20 | 11 19 | eqtrd | ⊢ ( 𝑅  ∈  CRing  →  ( ( 𝑂 ‘ 𝑍 ) ‘  0  )  =   0  ) |