| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1sca.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 2 |
|
evl1sca.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
evl1sca.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 4 |
|
evl1sca.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 5 |
|
evl1scad.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 6 |
|
evl1scad.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 7 |
|
evl1scad.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
evl1scad.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 10 |
2 4 3 5
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : 𝐵 ⟶ 𝑈 ) |
| 11 |
6 9 10
|
3syl |
⊢ ( 𝜑 → 𝐴 : 𝐵 ⟶ 𝑈 ) |
| 12 |
11 7
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ) |
| 13 |
1 2 3 4
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 14 |
6 7 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) = ( 𝐵 × { 𝑋 } ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) ) |
| 16 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
| 17 |
7 8 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐵 × { 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
| 18 |
15 17
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) |
| 19 |
12 18
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) ) ‘ 𝑌 ) = 𝑋 ) ) |