| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1sca.o | ⊢ 𝑂  =  ( eval1 ‘ 𝑅 ) | 
						
							| 2 |  | evl1sca.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | evl1sca.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | evl1sca.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 5 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 8 | 2 4 3 7 | ply1sclf | ⊢ ( 𝑅  ∈  Ring  →  𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝐴 : 𝐵 ⟶ ( Base ‘ 𝑃 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 11 | 9 10 | sylancom | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 1o  eval  𝑅 )  =  ( 1o  eval  𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 14 | 2 7 | ply1bas | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 15 | 1 12 3 13 14 | evl1val | ⊢ ( ( 𝑅  ∈  CRing  ∧  ( 𝐴 ‘ 𝑋 )  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( ( ( 1o  eval  𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) )  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) ) | 
						
							| 16 | 11 15 | syldan | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( ( ( 1o  eval  𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) )  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) ) | 
						
							| 17 | 2 4 | ply1ascl | ⊢ 𝐴  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 18 | 3 | ressid | ⊢ ( 𝑅  ∈  CRing  →  ( 𝑅  ↾s  𝐵 )  =  𝑅 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑅  ↾s  𝐵 )  =  𝑅 ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) )  =  ( 1o  mPoly  𝑅 ) ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) )  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) ) | 
						
							| 22 | 17 21 | eqtr4id | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝐴  =  ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) ) ) | 
						
							| 23 | 22 | fveq1d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝐴 ‘ 𝑋 )  =  ( ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) ) ‘ 𝑋 ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( 1o  eval  𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( ( 1o  eval  𝑅 ) ‘ ( ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) ) ‘ 𝑋 ) ) ) | 
						
							| 25 | 12 3 | evlval | ⊢ ( 1o  eval  𝑅 )  =  ( ( 1o  evalSub  𝑅 ) ‘ 𝐵 ) | 
						
							| 26 |  | eqid | ⊢ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) )  =  ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑅  ↾s  𝐵 )  =  ( 𝑅  ↾s  𝐵 ) | 
						
							| 28 |  | eqid | ⊢ ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) )  =  ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) ) | 
						
							| 29 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 30 | 29 | a1i | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  1o  ∈  On ) | 
						
							| 31 |  | simpl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝑅  ∈  CRing ) | 
						
							| 32 | 3 | subrgid | ⊢ ( 𝑅  ∈  Ring  →  𝐵  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 33 | 6 32 | syl | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝐵  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 35 | 25 26 27 3 28 30 31 33 34 | evlssca | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( 1o  eval  𝑅 ) ‘ ( ( algSc ‘ ( 1o  mPoly  ( 𝑅  ↾s  𝐵 ) ) ) ‘ 𝑋 ) )  =  ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } ) ) | 
						
							| 36 | 24 35 | eqtrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( 1o  eval  𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } ) ) | 
						
							| 37 | 36 | coeq1d | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 1o  eval  𝑅 ) ‘ ( 𝐴 ‘ 𝑋 ) )  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) )  =  ( ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } )  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) ) | 
						
							| 38 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 39 | 3 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 40 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 41 |  | eqid | ⊢ ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) )  =  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) | 
						
							| 42 | 38 39 40 41 | mapsnf1o3 | ⊢ ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵  ↑m  1o ) | 
						
							| 43 |  | f1of | ⊢ ( ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) : 𝐵 –1-1-onto→ ( 𝐵  ↑m  1o )  →  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵  ↑m  1o ) ) | 
						
							| 44 | 42 43 | mp1i | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵  ↑m  1o ) ) | 
						
							| 45 | 41 | fmpt | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 1o  ×  { 𝑦 } )  ∈  ( 𝐵  ↑m  1o )  ↔  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) : 𝐵 ⟶ ( 𝐵  ↑m  1o ) ) | 
						
							| 46 | 44 45 | sylibr | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ∀ 𝑦  ∈  𝐵 ( 1o  ×  { 𝑦 } )  ∈  ( 𝐵  ↑m  1o ) ) | 
						
							| 47 |  | eqidd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) )  =  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) ) | 
						
							| 48 |  | fconstmpt | ⊢ ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } )  =  ( 𝑥  ∈  ( 𝐵  ↑m  1o )  ↦  𝑋 ) | 
						
							| 49 | 48 | a1i | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } )  =  ( 𝑥  ∈  ( 𝐵  ↑m  1o )  ↦  𝑋 ) ) | 
						
							| 50 |  | eqidd | ⊢ ( 𝑥  =  ( 1o  ×  { 𝑦 } )  →  𝑋  =  𝑋 ) | 
						
							| 51 | 46 47 49 50 | fmptcof | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } )  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) )  =  ( 𝑦  ∈  𝐵  ↦  𝑋 ) ) | 
						
							| 52 |  | fconstmpt | ⊢ ( 𝐵  ×  { 𝑋 } )  =  ( 𝑦  ∈  𝐵  ↦  𝑋 ) | 
						
							| 53 | 51 52 | eqtr4di | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( ( ( 𝐵  ↑m  1o )  ×  { 𝑋 } )  ∘  ( 𝑦  ∈  𝐵  ↦  ( 1o  ×  { 𝑦 } ) ) )  =  ( 𝐵  ×  { 𝑋 } ) ) | 
						
							| 54 | 16 37 53 | 3eqtrd | ⊢ ( ( 𝑅  ∈  CRing  ∧  𝑋  ∈  𝐵 )  →  ( 𝑂 ‘ ( 𝐴 ‘ 𝑋 ) )  =  ( 𝐵  ×  { 𝑋 } ) ) |