| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapsncnv.s |
⊢ 𝑆 = { 𝑋 } |
| 2 |
|
mapsncnv.b |
⊢ 𝐵 ∈ V |
| 3 |
|
mapsncnv.x |
⊢ 𝑋 ∈ V |
| 4 |
|
mapsnf1o3.f |
⊢ 𝐹 = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) |
| 6 |
1 2 3 5
|
mapsnf1o2 |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 |
| 7 |
|
f1ocnv |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : ( 𝐵 ↑m 𝑆 ) –1-1-onto→ 𝐵 → ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) |
| 9 |
1 2 3 5
|
mapsncnv |
⊢ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑆 × { 𝑦 } ) ) |
| 10 |
4 9
|
eqtr4i |
⊢ 𝐹 = ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) |
| 11 |
|
f1oeq1 |
⊢ ( 𝐹 = ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) → ( 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ↔ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ↔ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 𝑆 ) ↦ ( 𝑥 ‘ 𝑋 ) ) : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) ) |
| 13 |
8 12
|
mpbir |
⊢ 𝐹 : 𝐵 –1-1-onto→ ( 𝐵 ↑m 𝑆 ) |