Metamath Proof Explorer


Theorem evl1at0

Description: Polynomial evaluation for the 0 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o O = eval 1 R
evl1at0.p P = Poly 1 R
evl1at0.0 0 ˙ = 0 R
evl1at0.z Z = 0 P
Assertion evl1at0 R CRing O Z 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 evl1at0.o O = eval 1 R
2 evl1at0.p P = Poly 1 R
3 evl1at0.0 0 ˙ = 0 R
4 evl1at0.z Z = 0 P
5 crngring R CRing R Ring
6 eqid algSc P = algSc P
7 2 6 3 4 ply1scl0 R Ring algSc P 0 ˙ = Z
8 5 7 syl R CRing algSc P 0 ˙ = Z
9 8 eqcomd R CRing Z = algSc P 0 ˙
10 9 fveq2d R CRing O Z = O algSc P 0 ˙
11 10 fveq1d R CRing O Z 0 ˙ = O algSc P 0 ˙ 0 ˙
12 eqid Base R = Base R
13 eqid Base P = Base P
14 id R CRing R CRing
15 ringgrp R Ring R Grp
16 12 3 grpidcl R Grp 0 ˙ Base R
17 5 15 16 3syl R CRing 0 ˙ Base R
18 1 2 12 6 13 14 17 17 evl1scad R CRing algSc P 0 ˙ Base P O algSc P 0 ˙ 0 ˙ = 0 ˙
19 18 simprd R CRing O algSc P 0 ˙ 0 ˙ = 0 ˙
20 11 19 eqtrd R CRing O Z 0 ˙ = 0 ˙