Metamath Proof Explorer


Theorem evl1at1

Description: Polynomial evaluation for the 1 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o O = eval 1 R
evl1at0.p P = Poly 1 R
evl1at1.1 1 ˙ = 1 R
evl1at1.i I = 1 P
Assertion evl1at1 R CRing O I 1 ˙ = 1 ˙

Proof

Step Hyp Ref Expression
1 evl1at0.o O = eval 1 R
2 evl1at0.p P = Poly 1 R
3 evl1at1.1 1 ˙ = 1 R
4 evl1at1.i I = 1 P
5 crngring R CRing R Ring
6 eqid algSc P = algSc P
7 2 6 3 4 ply1scl1 R Ring algSc P 1 ˙ = I
8 5 7 syl R CRing algSc P 1 ˙ = I
9 8 eqcomd R CRing I = algSc P 1 ˙
10 9 fveq2d R CRing O I = O algSc P 1 ˙
11 10 fveq1d R CRing O I 1 ˙ = O algSc P 1 ˙ 1 ˙
12 eqid Base R = Base R
13 eqid Base P = Base P
14 id R CRing R CRing
15 12 3 ringidcl R Ring 1 ˙ Base R
16 5 15 syl R CRing 1 ˙ Base R
17 1 2 12 6 13 14 16 16 evl1scad R CRing algSc P 1 ˙ Base P O algSc P 1 ˙ 1 ˙ = 1 ˙
18 17 simprd R CRing O algSc P 1 ˙ 1 ˙ = 1 ˙
19 11 18 eqtrd R CRing O I 1 ˙ = 1 ˙