Metamath Proof Explorer


Theorem evl1at1

Description: Polynomial evaluation for the 1 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o 𝑂 = ( eval1𝑅 )
evl1at0.p 𝑃 = ( Poly1𝑅 )
evl1at1.1 1 = ( 1r𝑅 )
evl1at1.i 𝐼 = ( 1r𝑃 )
Assertion evl1at1 ( 𝑅 ∈ CRing → ( ( 𝑂𝐼 ) ‘ 1 ) = 1 )

Proof

Step Hyp Ref Expression
1 evl1at0.o 𝑂 = ( eval1𝑅 )
2 evl1at0.p 𝑃 = ( Poly1𝑅 )
3 evl1at1.1 1 = ( 1r𝑅 )
4 evl1at1.i 𝐼 = ( 1r𝑃 )
5 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
6 eqid ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 )
7 2 6 3 4 ply1scl1 ( 𝑅 ∈ Ring → ( ( algSc ‘ 𝑃 ) ‘ 1 ) = 𝐼 )
8 5 7 syl ( 𝑅 ∈ CRing → ( ( algSc ‘ 𝑃 ) ‘ 1 ) = 𝐼 )
9 8 eqcomd ( 𝑅 ∈ CRing → 𝐼 = ( ( algSc ‘ 𝑃 ) ‘ 1 ) )
10 9 fveq2d ( 𝑅 ∈ CRing → ( 𝑂𝐼 ) = ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) )
11 10 fveq1d ( 𝑅 ∈ CRing → ( ( 𝑂𝐼 ) ‘ 1 ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) ‘ 1 ) )
12 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
13 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
14 id ( 𝑅 ∈ CRing → 𝑅 ∈ CRing )
15 12 3 ringidcl ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) )
16 5 15 syl ( 𝑅 ∈ CRing → 1 ∈ ( Base ‘ 𝑅 ) )
17 1 2 12 6 13 14 16 16 evl1scad ( 𝑅 ∈ CRing → ( ( ( algSc ‘ 𝑃 ) ‘ 1 ) ∈ ( Base ‘ 𝑃 ) ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) ‘ 1 ) = 1 ) )
18 17 simprd ( 𝑅 ∈ CRing → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 1 ) ) ‘ 1 ) = 1 )
19 11 18 eqtrd ( 𝑅 ∈ CRing → ( ( 𝑂𝐼 ) ‘ 1 ) = 1 )