Metamath Proof Explorer


Theorem evl1at1

Description: Polynomial evaluation for the 1 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o
|- O = ( eval1 ` R )
evl1at0.p
|- P = ( Poly1 ` R )
evl1at1.1
|- .1. = ( 1r ` R )
evl1at1.i
|- I = ( 1r ` P )
Assertion evl1at1
|- ( R e. CRing -> ( ( O ` I ) ` .1. ) = .1. )

Proof

Step Hyp Ref Expression
1 evl1at0.o
 |-  O = ( eval1 ` R )
2 evl1at0.p
 |-  P = ( Poly1 ` R )
3 evl1at1.1
 |-  .1. = ( 1r ` R )
4 evl1at1.i
 |-  I = ( 1r ` P )
5 crngring
 |-  ( R e. CRing -> R e. Ring )
6 eqid
 |-  ( algSc ` P ) = ( algSc ` P )
7 2 6 3 4 ply1scl1
 |-  ( R e. Ring -> ( ( algSc ` P ) ` .1. ) = I )
8 5 7 syl
 |-  ( R e. CRing -> ( ( algSc ` P ) ` .1. ) = I )
9 8 eqcomd
 |-  ( R e. CRing -> I = ( ( algSc ` P ) ` .1. ) )
10 9 fveq2d
 |-  ( R e. CRing -> ( O ` I ) = ( O ` ( ( algSc ` P ) ` .1. ) ) )
11 10 fveq1d
 |-  ( R e. CRing -> ( ( O ` I ) ` .1. ) = ( ( O ` ( ( algSc ` P ) ` .1. ) ) ` .1. ) )
12 eqid
 |-  ( Base ` R ) = ( Base ` R )
13 eqid
 |-  ( Base ` P ) = ( Base ` P )
14 id
 |-  ( R e. CRing -> R e. CRing )
15 12 3 ringidcl
 |-  ( R e. Ring -> .1. e. ( Base ` R ) )
16 5 15 syl
 |-  ( R e. CRing -> .1. e. ( Base ` R ) )
17 1 2 12 6 13 14 16 16 evl1scad
 |-  ( R e. CRing -> ( ( ( algSc ` P ) ` .1. ) e. ( Base ` P ) /\ ( ( O ` ( ( algSc ` P ) ` .1. ) ) ` .1. ) = .1. ) )
18 17 simprd
 |-  ( R e. CRing -> ( ( O ` ( ( algSc ` P ) ` .1. ) ) ` .1. ) = .1. )
19 11 18 eqtrd
 |-  ( R e. CRing -> ( ( O ` I ) ` .1. ) = .1. )