Step |
Hyp |
Ref |
Expression |
1 |
|
evl1at0.o |
|- O = ( eval1 ` R ) |
2 |
|
evl1at0.p |
|- P = ( Poly1 ` R ) |
3 |
|
evl1at0.0 |
|- .0. = ( 0g ` R ) |
4 |
|
evl1at0.z |
|- Z = ( 0g ` P ) |
5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
6 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
7 |
2 6 3 4
|
ply1scl0 |
|- ( R e. Ring -> ( ( algSc ` P ) ` .0. ) = Z ) |
8 |
5 7
|
syl |
|- ( R e. CRing -> ( ( algSc ` P ) ` .0. ) = Z ) |
9 |
8
|
eqcomd |
|- ( R e. CRing -> Z = ( ( algSc ` P ) ` .0. ) ) |
10 |
9
|
fveq2d |
|- ( R e. CRing -> ( O ` Z ) = ( O ` ( ( algSc ` P ) ` .0. ) ) ) |
11 |
10
|
fveq1d |
|- ( R e. CRing -> ( ( O ` Z ) ` .0. ) = ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
14 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
15 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
16 |
12 3
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
17 |
5 15 16
|
3syl |
|- ( R e. CRing -> .0. e. ( Base ` R ) ) |
18 |
1 2 12 6 13 14 17 17
|
evl1scad |
|- ( R e. CRing -> ( ( ( algSc ` P ) ` .0. ) e. ( Base ` P ) /\ ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) ) |
19 |
18
|
simprd |
|- ( R e. CRing -> ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) |
20 |
11 19
|
eqtrd |
|- ( R e. CRing -> ( ( O ` Z ) ` .0. ) = .0. ) |