| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evl1at0.o |  |-  O = ( eval1 ` R ) | 
						
							| 2 |  | evl1at0.p |  |-  P = ( Poly1 ` R ) | 
						
							| 3 |  | evl1at0.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | evl1at0.z |  |-  Z = ( 0g ` P ) | 
						
							| 5 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 6 |  | eqid |  |-  ( algSc ` P ) = ( algSc ` P ) | 
						
							| 7 | 2 6 3 4 | ply1scl0 |  |-  ( R e. Ring -> ( ( algSc ` P ) ` .0. ) = Z ) | 
						
							| 8 | 5 7 | syl |  |-  ( R e. CRing -> ( ( algSc ` P ) ` .0. ) = Z ) | 
						
							| 9 | 8 | eqcomd |  |-  ( R e. CRing -> Z = ( ( algSc ` P ) ` .0. ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( R e. CRing -> ( O ` Z ) = ( O ` ( ( algSc ` P ) ` .0. ) ) ) | 
						
							| 11 | 10 | fveq1d |  |-  ( R e. CRing -> ( ( O ` Z ) ` .0. ) = ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 13 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 14 |  | id |  |-  ( R e. CRing -> R e. CRing ) | 
						
							| 15 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 16 | 12 3 | grpidcl |  |-  ( R e. Grp -> .0. e. ( Base ` R ) ) | 
						
							| 17 | 5 15 16 | 3syl |  |-  ( R e. CRing -> .0. e. ( Base ` R ) ) | 
						
							| 18 | 1 2 12 6 13 14 17 17 | evl1scad |  |-  ( R e. CRing -> ( ( ( algSc ` P ) ` .0. ) e. ( Base ` P ) /\ ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) ) | 
						
							| 19 | 18 | simprd |  |-  ( R e. CRing -> ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) | 
						
							| 20 | 11 19 | eqtrd |  |-  ( R e. CRing -> ( ( O ` Z ) ` .0. ) = .0. ) |