Metamath Proof Explorer


Theorem evl1at0

Description: Polynomial evaluation for the 0 scalar. (Contributed by AV, 10-Aug-2019)

Ref Expression
Hypotheses evl1at0.o
|- O = ( eval1 ` R )
evl1at0.p
|- P = ( Poly1 ` R )
evl1at0.0
|- .0. = ( 0g ` R )
evl1at0.z
|- Z = ( 0g ` P )
Assertion evl1at0
|- ( R e. CRing -> ( ( O ` Z ) ` .0. ) = .0. )

Proof

Step Hyp Ref Expression
1 evl1at0.o
 |-  O = ( eval1 ` R )
2 evl1at0.p
 |-  P = ( Poly1 ` R )
3 evl1at0.0
 |-  .0. = ( 0g ` R )
4 evl1at0.z
 |-  Z = ( 0g ` P )
5 crngring
 |-  ( R e. CRing -> R e. Ring )
6 eqid
 |-  ( algSc ` P ) = ( algSc ` P )
7 2 6 3 4 ply1scl0
 |-  ( R e. Ring -> ( ( algSc ` P ) ` .0. ) = Z )
8 5 7 syl
 |-  ( R e. CRing -> ( ( algSc ` P ) ` .0. ) = Z )
9 8 eqcomd
 |-  ( R e. CRing -> Z = ( ( algSc ` P ) ` .0. ) )
10 9 fveq2d
 |-  ( R e. CRing -> ( O ` Z ) = ( O ` ( ( algSc ` P ) ` .0. ) ) )
11 10 fveq1d
 |-  ( R e. CRing -> ( ( O ` Z ) ` .0. ) = ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) )
12 eqid
 |-  ( Base ` R ) = ( Base ` R )
13 eqid
 |-  ( Base ` P ) = ( Base ` P )
14 id
 |-  ( R e. CRing -> R e. CRing )
15 ringgrp
 |-  ( R e. Ring -> R e. Grp )
16 12 3 grpidcl
 |-  ( R e. Grp -> .0. e. ( Base ` R ) )
17 5 15 16 3syl
 |-  ( R e. CRing -> .0. e. ( Base ` R ) )
18 1 2 12 6 13 14 17 17 evl1scad
 |-  ( R e. CRing -> ( ( ( algSc ` P ) ` .0. ) e. ( Base ` P ) /\ ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) )
19 18 simprd
 |-  ( R e. CRing -> ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. )
20 11 19 eqtrd
 |-  ( R e. CRing -> ( ( O ` Z ) ` .0. ) = .0. )