| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evl1at0.o |
|- O = ( eval1 ` R ) |
| 2 |
|
evl1at0.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
evl1at0.0 |
|- .0. = ( 0g ` R ) |
| 4 |
|
evl1at0.z |
|- Z = ( 0g ` P ) |
| 5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 6 |
|
eqid |
|- ( algSc ` P ) = ( algSc ` P ) |
| 7 |
2 6 3 4
|
ply1scl0 |
|- ( R e. Ring -> ( ( algSc ` P ) ` .0. ) = Z ) |
| 8 |
5 7
|
syl |
|- ( R e. CRing -> ( ( algSc ` P ) ` .0. ) = Z ) |
| 9 |
8
|
eqcomd |
|- ( R e. CRing -> Z = ( ( algSc ` P ) ` .0. ) ) |
| 10 |
9
|
fveq2d |
|- ( R e. CRing -> ( O ` Z ) = ( O ` ( ( algSc ` P ) ` .0. ) ) ) |
| 11 |
10
|
fveq1d |
|- ( R e. CRing -> ( ( O ` Z ) ` .0. ) = ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) ) |
| 12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 13 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 14 |
|
id |
|- ( R e. CRing -> R e. CRing ) |
| 15 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 16 |
12 3
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 17 |
5 15 16
|
3syl |
|- ( R e. CRing -> .0. e. ( Base ` R ) ) |
| 18 |
1 2 12 6 13 14 17 17
|
evl1scad |
|- ( R e. CRing -> ( ( ( algSc ` P ) ` .0. ) e. ( Base ` P ) /\ ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) ) |
| 19 |
18
|
simprd |
|- ( R e. CRing -> ( ( O ` ( ( algSc ` P ) ` .0. ) ) ` .0. ) = .0. ) |
| 20 |
11 19
|
eqtrd |
|- ( R e. CRing -> ( ( O ` Z ) ` .0. ) = .0. ) |