Metamath Proof Explorer


Theorem ply1mulgsumlem3

Description: Lemma 3 for ply1mulgsum . (Contributed by AV, 20-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p 𝑃 = ( Poly1𝑅 )
ply1mulgsum.b 𝐵 = ( Base ‘ 𝑃 )
ply1mulgsum.a 𝐴 = ( coe1𝐾 )
ply1mulgsum.c 𝐶 = ( coe1𝐿 )
ply1mulgsum.x 𝑋 = ( var1𝑅 )
ply1mulgsum.pm × = ( .r𝑃 )
ply1mulgsum.sm · = ( ·𝑠𝑃 )
ply1mulgsum.rm = ( .r𝑅 )
ply1mulgsum.m 𝑀 = ( mulGrp ‘ 𝑃 )
ply1mulgsum.e = ( .g𝑀 )
Assertion ply1mulgsumlem3 ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) ) finSupp ( 0g𝑅 ) )

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p 𝑃 = ( Poly1𝑅 )
2 ply1mulgsum.b 𝐵 = ( Base ‘ 𝑃 )
3 ply1mulgsum.a 𝐴 = ( coe1𝐾 )
4 ply1mulgsum.c 𝐶 = ( coe1𝐿 )
5 ply1mulgsum.x 𝑋 = ( var1𝑅 )
6 ply1mulgsum.pm × = ( .r𝑃 )
7 ply1mulgsum.sm · = ( ·𝑠𝑃 )
8 ply1mulgsum.rm = ( .r𝑅 )
9 ply1mulgsum.m 𝑀 = ( mulGrp ‘ 𝑃 )
10 ply1mulgsum.e = ( .g𝑀 )
11 fvexd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( 0g𝑅 ) ∈ V )
12 ovexd ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) ∈ V )
13 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem2 ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) )
14 vex 𝑛 ∈ V
15 csbov2g ( 𝑛 ∈ V → 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 𝑅 Σg 𝑛 / 𝑘 ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) )
16 id ( 𝑛 ∈ V → 𝑛 ∈ V )
17 oveq2 ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) )
18 fvoveq1 ( 𝑘 = 𝑛 → ( 𝐶 ‘ ( 𝑘𝑙 ) ) = ( 𝐶 ‘ ( 𝑛𝑙 ) ) )
19 18 oveq2d ( 𝑘 = 𝑛 → ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) = ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) )
20 17 19 mpteq12dv ( 𝑘 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) )
21 20 adantl ( ( 𝑛 ∈ V ∧ 𝑘 = 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) )
22 16 21 csbied ( 𝑛 ∈ V → 𝑛 / 𝑘 ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) )
23 22 oveq2d ( 𝑛 ∈ V → ( 𝑅 Σg 𝑛 / 𝑘 ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) )
24 15 23 eqtrd ( 𝑛 ∈ V → 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) )
25 14 24 ax-mp 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) )
26 simpr ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) )
27 25 26 syl5eq ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) → 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 0g𝑅 ) )
28 27 ex ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) → 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) )
29 28 imim2d ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) → ( 𝑠 < 𝑛 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) ) )
30 29 ralimdva ( ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) ) )
31 30 reximdva ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑛𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) ) )
32 13 31 mpd ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ∃ 𝑠 ∈ ℕ0𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 𝑛 / 𝑘 ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) = ( 0g𝑅 ) ) )
33 11 12 32 mptnn0fsupp ( ( 𝑅 ∈ Ring ∧ 𝐾𝐵𝐿𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴𝑙 ) ( 𝐶 ‘ ( 𝑘𝑙 ) ) ) ) ) ) finSupp ( 0g𝑅 ) )