Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
ply1mulgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
ply1mulgsum.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
4 |
|
ply1mulgsum.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
5 |
|
ply1mulgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
ply1mulgsum.pm |
⊢ × = ( .r ‘ 𝑃 ) |
7 |
|
ply1mulgsum.sm |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
8 |
|
ply1mulgsum.rm |
⊢ ∗ = ( .r ‘ 𝑅 ) |
9 |
|
ply1mulgsum.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑃 ) |
10 |
|
ply1mulgsum.e |
⊢ ↑ = ( .g ‘ 𝑀 ) |
11 |
|
fvexd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
12 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ∈ V ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
14 |
|
vex |
⊢ 𝑛 ∈ V |
15 |
|
csbov2g |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) |
16 |
|
id |
⊢ ( 𝑛 ∈ V → 𝑛 ∈ V ) |
17 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 0 ... 𝑘 ) = ( 0 ... 𝑛 ) ) |
18 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) = ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) = ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) |
20 |
17 19
|
mpteq12dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝑛 ∈ V ∧ 𝑘 = 𝑛 ) → ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
22 |
16 21
|
csbied |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) = ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑛 ∈ V → ( 𝑅 Σg ⦋ 𝑛 / 𝑘 ⦌ ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
24 |
15 23
|
eqtrd |
⊢ ( 𝑛 ∈ V → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) ) |
25 |
14 24
|
ax-mp |
⊢ ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) |
26 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
27 |
25 26
|
syl5eq |
⊢ ( ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) |
28 |
27
|
ex |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
29 |
28
|
imim2d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
30 |
29
|
ralimdva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
31 |
30
|
reximdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑛 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑛 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
32 |
13 31
|
mpd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑛 ∈ ℕ0 ( 𝑠 < 𝑛 → ⦋ 𝑛 / 𝑘 ⦌ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) = ( 0g ‘ 𝑅 ) ) ) |
33 |
11 12 32
|
mptnn0fsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑙 ∈ ( 0 ... 𝑘 ) ↦ ( ( 𝐴 ‘ 𝑙 ) ∗ ( 𝐶 ‘ ( 𝑘 − 𝑙 ) ) ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |