Step |
Hyp |
Ref |
Expression |
1 |
|
ply1mulgsum.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1mulgsum.b |
|- B = ( Base ` P ) |
3 |
|
ply1mulgsum.a |
|- A = ( coe1 ` K ) |
4 |
|
ply1mulgsum.c |
|- C = ( coe1 ` L ) |
5 |
|
ply1mulgsum.x |
|- X = ( var1 ` R ) |
6 |
|
ply1mulgsum.pm |
|- .X. = ( .r ` P ) |
7 |
|
ply1mulgsum.sm |
|- .x. = ( .s ` P ) |
8 |
|
ply1mulgsum.rm |
|- .* = ( .r ` R ) |
9 |
|
ply1mulgsum.m |
|- M = ( mulGrp ` P ) |
10 |
|
ply1mulgsum.e |
|- .^ = ( .g ` M ) |
11 |
|
fvexd |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( 0g ` R ) e. _V ) |
12 |
|
ovexd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. _V ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) |
14 |
|
vex |
|- n e. _V |
15 |
|
csbov2g |
|- ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) |
16 |
|
id |
|- ( n e. _V -> n e. _V ) |
17 |
|
oveq2 |
|- ( k = n -> ( 0 ... k ) = ( 0 ... n ) ) |
18 |
|
fvoveq1 |
|- ( k = n -> ( C ` ( k - l ) ) = ( C ` ( n - l ) ) ) |
19 |
18
|
oveq2d |
|- ( k = n -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) = ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) |
20 |
17 19
|
mpteq12dv |
|- ( k = n -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
21 |
20
|
adantl |
|- ( ( n e. _V /\ k = n ) -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
22 |
16 21
|
csbied |
|- ( n e. _V -> [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
23 |
22
|
oveq2d |
|- ( n e. _V -> ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
24 |
15 23
|
eqtrd |
|- ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
25 |
14 24
|
ax-mp |
|- [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
26 |
|
simpr |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) /\ ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) |
27 |
25 26
|
syl5eq |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) /\ ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) |
28 |
27
|
ex |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) |
29 |
28
|
imim2d |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
30 |
29
|
ralimdva |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) -> ( A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> A. n e. NN0 ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
31 |
30
|
reximdva |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> E. s e. NN0 A. n e. NN0 ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
32 |
13 31
|
mpd |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) |
33 |
11 12 32
|
mptnn0fsupp |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( k e. NN0 |-> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) finSupp ( 0g ` R ) ) |