| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1mulgsum.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1mulgsum.b |
|- B = ( Base ` P ) |
| 3 |
|
ply1mulgsum.a |
|- A = ( coe1 ` K ) |
| 4 |
|
ply1mulgsum.c |
|- C = ( coe1 ` L ) |
| 5 |
|
ply1mulgsum.x |
|- X = ( var1 ` R ) |
| 6 |
|
ply1mulgsum.pm |
|- .X. = ( .r ` P ) |
| 7 |
|
ply1mulgsum.sm |
|- .x. = ( .s ` P ) |
| 8 |
|
ply1mulgsum.rm |
|- .* = ( .r ` R ) |
| 9 |
|
ply1mulgsum.m |
|- M = ( mulGrp ` P ) |
| 10 |
|
ply1mulgsum.e |
|- .^ = ( .g ` M ) |
| 11 |
|
fvexd |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( 0g ` R ) e. _V ) |
| 12 |
|
ovexd |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ k e. NN0 ) -> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) e. _V ) |
| 13 |
1 2 3 4 5 6 7 8 9 10
|
ply1mulgsumlem2 |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) ) |
| 14 |
|
vex |
|- n e. _V |
| 15 |
|
csbov2g |
|- ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) |
| 16 |
|
id |
|- ( n e. _V -> n e. _V ) |
| 17 |
|
oveq2 |
|- ( k = n -> ( 0 ... k ) = ( 0 ... n ) ) |
| 18 |
|
fvoveq1 |
|- ( k = n -> ( C ` ( k - l ) ) = ( C ` ( n - l ) ) ) |
| 19 |
18
|
oveq2d |
|- ( k = n -> ( ( A ` l ) .* ( C ` ( k - l ) ) ) = ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) |
| 20 |
17 19
|
mpteq12dv |
|- ( k = n -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
| 21 |
20
|
adantl |
|- ( ( n e. _V /\ k = n ) -> ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
| 22 |
16 21
|
csbied |
|- ( n e. _V -> [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) = ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
| 23 |
22
|
oveq2d |
|- ( n e. _V -> ( R gsum [_ n / k ]_ ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
| 24 |
15 23
|
eqtrd |
|- ( n e. _V -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) ) |
| 25 |
14 24
|
ax-mp |
|- [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) |
| 26 |
|
simpr |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) /\ ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) |
| 27 |
25 26
|
eqtrid |
|- ( ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) /\ ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) |
| 28 |
27
|
ex |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) |
| 29 |
28
|
imim2d |
|- ( ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) /\ n e. NN0 ) -> ( ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
| 30 |
29
|
ralimdva |
|- ( ( ( R e. Ring /\ K e. B /\ L e. B ) /\ s e. NN0 ) -> ( A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> A. n e. NN0 ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
| 31 |
30
|
reximdva |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( E. s e. NN0 A. n e. NN0 ( s < n -> ( R gsum ( l e. ( 0 ... n ) |-> ( ( A ` l ) .* ( C ` ( n - l ) ) ) ) ) = ( 0g ` R ) ) -> E. s e. NN0 A. n e. NN0 ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) ) |
| 32 |
13 31
|
mpd |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> E. s e. NN0 A. n e. NN0 ( s < n -> [_ n / k ]_ ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) = ( 0g ` R ) ) ) |
| 33 |
11 12 32
|
mptnn0fsupp |
|- ( ( R e. Ring /\ K e. B /\ L e. B ) -> ( k e. NN0 |-> ( R gsum ( l e. ( 0 ... k ) |-> ( ( A ` l ) .* ( C ` ( k - l ) ) ) ) ) ) finSupp ( 0g ` R ) ) |