Metamath Proof Explorer


Theorem coe1scl

Description: Coefficient vector of a scalar. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses ply1scl.p P=Poly1R
ply1scl.a A=algScP
coe1scl.k K=BaseR
coe1scl.z 0˙=0R
Assertion coe1scl RRingXKcoe1AX=x0ifx=0X0˙

Proof

Step Hyp Ref Expression
1 ply1scl.p P=Poly1R
2 ply1scl.a A=algScP
3 coe1scl.k K=BaseR
4 coe1scl.z 0˙=0R
5 eqid var1R=var1R
6 eqid P=P
7 eqid mulGrpP=mulGrpP
8 eqid mulGrpP=mulGrpP
9 3 1 5 6 7 8 2 ply1scltm RRingXKAX=XP0mulGrpPvar1R
10 9 fveq2d RRingXKcoe1AX=coe1XP0mulGrpPvar1R
11 0nn0 00
12 4 3 1 5 6 7 8 coe1tm RRingXK00coe1XP0mulGrpPvar1R=x0ifx=0X0˙
13 11 12 mp3an3 RRingXKcoe1XP0mulGrpPvar1R=x0ifx=0X0˙
14 10 13 eqtrd RRingXKcoe1AX=x0ifx=0X0˙