Metamath Proof Explorer


Theorem ply1ass23l

Description: Associative identity with scalar and ring multiplication for the polynomial ring. (Contributed by AV, 14-Aug-2019)

Ref Expression
Hypotheses ply1ass23l.p P = Poly 1 R
ply1ass23l.t × ˙ = P
ply1ass23l.b B = Base P
ply1ass23l.k K = Base R
ply1ass23l.n · ˙ = P
Assertion ply1ass23l R Ring A K X B Y B A · ˙ X × ˙ Y = A · ˙ X × ˙ Y

Proof

Step Hyp Ref Expression
1 ply1ass23l.p P = Poly 1 R
2 ply1ass23l.t × ˙ = P
3 ply1ass23l.b B = Base P
4 ply1ass23l.k K = Base R
5 ply1ass23l.n · ˙ = P
6 eqid 1 𝑜 mPwSer R = 1 𝑜 mPwSer R
7 1on 1 𝑜 On
8 7 a1i R Ring A K X B Y B 1 𝑜 On
9 simpl R Ring A K X B Y B R Ring
10 eqid f 0 1 𝑜 | f -1 Fin = f 0 1 𝑜 | f -1 Fin
11 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
12 1 11 2 ply1mulr × ˙ = 1 𝑜 mPoly R
13 11 6 12 mplmulr × ˙ = 1 𝑜 mPwSer R
14 eqid Base 1 𝑜 mPwSer R = Base 1 𝑜 mPwSer R
15 eqid Base 1 𝑜 mPoly R = Base 1 𝑜 mPoly R
16 11 6 15 14 mplbasss Base 1 𝑜 mPoly R Base 1 𝑜 mPwSer R
17 1 3 ply1bascl2 X B X Base 1 𝑜 mPoly R
18 16 17 sseldi X B X Base 1 𝑜 mPwSer R
19 18 3ad2ant2 A K X B Y B X Base 1 𝑜 mPwSer R
20 19 adantl R Ring A K X B Y B X Base 1 𝑜 mPwSer R
21 1 3 ply1bascl2 Y B Y Base 1 𝑜 mPoly R
22 16 21 sseldi Y B Y Base 1 𝑜 mPwSer R
23 22 3ad2ant3 A K X B Y B Y Base 1 𝑜 mPwSer R
24 23 adantl R Ring A K X B Y B Y Base 1 𝑜 mPwSer R
25 1 11 5 ply1vsca · ˙ = 1 𝑜 mPoly R
26 11 6 25 mplvsca2 · ˙ = 1 𝑜 mPwSer R
27 simpr1 R Ring A K X B Y B A K
28 6 8 9 10 13 14 20 24 4 26 27 psrass23l R Ring A K X B Y B A · ˙ X × ˙ Y = A · ˙ X × ˙ Y