Metamath Proof Explorer


Theorem deg1vscale

Description: The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y
|- Y = ( Poly1 ` R )
deg1addle.d
|- D = ( deg1 ` R )
deg1addle.r
|- ( ph -> R e. Ring )
deg1vscale.b
|- B = ( Base ` Y )
deg1vscale.k
|- K = ( Base ` R )
deg1vscale.p
|- .x. = ( .s ` Y )
deg1vscale.f
|- ( ph -> F e. K )
deg1vscale.g
|- ( ph -> G e. B )
Assertion deg1vscale
|- ( ph -> ( D ` ( F .x. G ) ) <_ ( D ` G ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y
 |-  Y = ( Poly1 ` R )
2 deg1addle.d
 |-  D = ( deg1 ` R )
3 deg1addle.r
 |-  ( ph -> R e. Ring )
4 deg1vscale.b
 |-  B = ( Base ` Y )
5 deg1vscale.k
 |-  K = ( Base ` R )
6 deg1vscale.p
 |-  .x. = ( .s ` Y )
7 deg1vscale.f
 |-  ( ph -> F e. K )
8 deg1vscale.g
 |-  ( ph -> G e. B )
9 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
10 2 deg1fval
 |-  D = ( 1o mDeg R )
11 1on
 |-  1o e. On
12 11 a1i
 |-  ( ph -> 1o e. On )
13 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
14 1 13 4 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
15 1 9 6 ply1vsca
 |-  .x. = ( .s ` ( 1o mPoly R ) )
16 9 10 12 3 14 5 15 7 8 mdegvscale
 |-  ( ph -> ( D ` ( F .x. G ) ) <_ ( D ` G ) )