Metamath Proof Explorer


Theorem deg1vscale

Description: The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1vscale.b B=BaseY
deg1vscale.k K=BaseR
deg1vscale.p ·˙=Y
deg1vscale.f φFK
deg1vscale.g φGB
Assertion deg1vscale φDF·˙GDG

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1vscale.b B=BaseY
5 deg1vscale.k K=BaseR
6 deg1vscale.p ·˙=Y
7 deg1vscale.f φFK
8 deg1vscale.g φGB
9 eqid 1𝑜mPolyR=1𝑜mPolyR
10 2 deg1fval D=1𝑜mDegR
11 1on 1𝑜On
12 11 a1i φ1𝑜On
13 eqid PwSer1R=PwSer1R
14 1 13 4 ply1bas B=Base1𝑜mPolyR
15 1 9 6 ply1vsca ·˙=1𝑜mPolyR
16 9 10 12 3 14 5 15 7 8 mdegvscale φDF·˙GDG