Metamath Proof Explorer


Theorem deg1vsca

Description: The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y=Poly1R
deg1addle.d D=deg1R
deg1addle.r φRRing
deg1vsca.b B=BaseY
deg1vsca.e E=RLRegR
deg1vsca.p ·˙=Y
deg1vsca.f φFE
deg1vsca.g φGB
Assertion deg1vsca φDF·˙G=DG

Proof

Step Hyp Ref Expression
1 deg1addle.y Y=Poly1R
2 deg1addle.d D=deg1R
3 deg1addle.r φRRing
4 deg1vsca.b B=BaseY
5 deg1vsca.e E=RLRegR
6 deg1vsca.p ·˙=Y
7 deg1vsca.f φFE
8 deg1vsca.g φGB
9 eqid 1𝑜mPolyR=1𝑜mPolyR
10 2 deg1fval D=1𝑜mDegR
11 1on 1𝑜On
12 11 a1i φ1𝑜On
13 eqid PwSer1R=PwSer1R
14 1 13 4 ply1bas B=Base1𝑜mPolyR
15 1 9 6 ply1vsca ·˙=1𝑜mPolyR
16 9 10 12 3 14 5 15 7 8 mdegvsca φDF·˙G=DG