Metamath Proof Explorer


Theorem mdegvsca

Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegaddle.y Y=ImPolyR
mdegaddle.d D=ImDegR
mdegaddle.i φIV
mdegaddle.r φRRing
mdegvsca.b B=BaseY
mdegvsca.e E=RLRegR
mdegvsca.p ·˙=Y
mdegvsca.f φFE
mdegvsca.g φGB
Assertion mdegvsca φDF·˙G=DG

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y=ImPolyR
2 mdegaddle.d D=ImDegR
3 mdegaddle.i φIV
4 mdegaddle.r φRRing
5 mdegvsca.b B=BaseY
6 mdegvsca.e E=RLRegR
7 mdegvsca.p ·˙=Y
8 mdegvsca.f φFE
9 mdegvsca.g φGB
10 eqid BaseR=BaseR
11 eqid R=R
12 eqid x0I|x-1Fin=x0I|x-1Fin
13 6 10 rrgss EBaseR
14 13 8 sselid φFBaseR
15 1 7 10 5 11 12 14 9 mplvsca φF·˙G=x0I|x-1Fin×FRfG
16 15 oveq1d φF·˙Gsupp0R=x0I|x-1Fin×FRfGsupp0R
17 eqid 0R=0R
18 ovex 0IV
19 18 rabex x0I|x-1FinV
20 19 a1i φx0I|x-1FinV
21 1 10 5 12 9 mplelf φG:x0I|x-1FinBaseR
22 6 10 11 17 20 4 8 21 rrgsupp φx0I|x-1Fin×FRfGsupp0R=Gsupp0R
23 16 22 eqtrd φF·˙Gsupp0R=Gsupp0R
24 23 imaeq2d φyx0I|x-1FinfldyF·˙Gsupp0R=yx0I|x-1FinfldyGsupp0R
25 24 supeq1d φsupyx0I|x-1FinfldyF·˙Gsupp0R*<=supyx0I|x-1FinfldyGsupp0R*<
26 1 mpllmod IVRRingYLMod
27 3 4 26 syl2anc φYLMod
28 1 3 4 mplsca φR=ScalarY
29 28 fveq2d φBaseR=BaseScalarY
30 14 29 eleqtrd φFBaseScalarY
31 eqid ScalarY=ScalarY
32 eqid BaseScalarY=BaseScalarY
33 5 31 7 32 lmodvscl YLModFBaseScalarYGBF·˙GB
34 27 30 9 33 syl3anc φF·˙GB
35 eqid yx0I|x-1Finfldy=yx0I|x-1Finfldy
36 2 1 5 17 12 35 mdegval F·˙GBDF·˙G=supyx0I|x-1FinfldyF·˙Gsupp0R*<
37 34 36 syl φDF·˙G=supyx0I|x-1FinfldyF·˙Gsupp0R*<
38 2 1 5 17 12 35 mdegval GBDG=supyx0I|x-1FinfldyGsupp0R*<
39 9 38 syl φDG=supyx0I|x-1FinfldyGsupp0R*<
40 25 37 39 3eqtr4d φDF·˙G=DG