Description: The degree of a scalar multiple of a polynomial is exactly the degree of the original polynomial when the multiple is a nonzero-divisor. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdegaddle.y | |
|
mdegaddle.d | |
||
mdegaddle.i | |
||
mdegaddle.r | |
||
mdegvsca.b | |
||
mdegvsca.e | |
||
mdegvsca.p | |
||
mdegvsca.f | |
||
mdegvsca.g | |
||
Assertion | mdegvsca | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegaddle.y | |
|
2 | mdegaddle.d | |
|
3 | mdegaddle.i | |
|
4 | mdegaddle.r | |
|
5 | mdegvsca.b | |
|
6 | mdegvsca.e | |
|
7 | mdegvsca.p | |
|
8 | mdegvsca.f | |
|
9 | mdegvsca.g | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 6 10 | rrgss | |
14 | 13 8 | sselid | |
15 | 1 7 10 5 11 12 14 9 | mplvsca | |
16 | 15 | oveq1d | |
17 | eqid | |
|
18 | ovex | |
|
19 | 18 | rabex | |
20 | 19 | a1i | |
21 | 1 10 5 12 9 | mplelf | |
22 | 6 10 11 17 20 4 8 21 | rrgsupp | |
23 | 16 22 | eqtrd | |
24 | 23 | imaeq2d | |
25 | 24 | supeq1d | |
26 | 1 | mpllmod | |
27 | 3 4 26 | syl2anc | |
28 | 1 3 4 | mplsca | |
29 | 28 | fveq2d | |
30 | 14 29 | eleqtrd | |
31 | eqid | |
|
32 | eqid | |
|
33 | 5 31 7 32 | lmodvscl | |
34 | 27 30 9 33 | syl3anc | |
35 | eqid | |
|
36 | 2 1 5 17 12 35 | mdegval | |
37 | 34 36 | syl | |
38 | 2 1 5 17 12 35 | mdegval | |
39 | 9 38 | syl | |
40 | 25 37 39 | 3eqtr4d | |