| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdegaddle.y |  |-  Y = ( I mPoly R ) | 
						
							| 2 |  | mdegaddle.d |  |-  D = ( I mDeg R ) | 
						
							| 3 |  | mdegaddle.i |  |-  ( ph -> I e. V ) | 
						
							| 4 |  | mdegaddle.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | mdegvsca.b |  |-  B = ( Base ` Y ) | 
						
							| 6 |  | mdegvsca.e |  |-  E = ( RLReg ` R ) | 
						
							| 7 |  | mdegvsca.p |  |-  .x. = ( .s ` Y ) | 
						
							| 8 |  | mdegvsca.f |  |-  ( ph -> F e. E ) | 
						
							| 9 |  | mdegvsca.g |  |-  ( ph -> G e. B ) | 
						
							| 10 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 11 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 12 |  | eqid |  |-  { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } = { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } | 
						
							| 13 | 6 10 | rrgss |  |-  E C_ ( Base ` R ) | 
						
							| 14 | 13 8 | sselid |  |-  ( ph -> F e. ( Base ` R ) ) | 
						
							| 15 | 1 7 10 5 11 12 14 9 | mplvsca |  |-  ( ph -> ( F .x. G ) = ( ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { F } ) oF ( .r ` R ) G ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ph -> ( ( F .x. G ) supp ( 0g ` R ) ) = ( ( ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { F } ) oF ( .r ` R ) G ) supp ( 0g ` R ) ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 18 |  | ovex |  |-  ( NN0 ^m I ) e. _V | 
						
							| 19 | 18 | rabex |  |-  { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ph -> { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } e. _V ) | 
						
							| 21 | 1 10 5 12 9 | mplelf |  |-  ( ph -> G : { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } --> ( Base ` R ) ) | 
						
							| 22 | 6 10 11 17 20 4 8 21 | rrgsupp |  |-  ( ph -> ( ( ( { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } X. { F } ) oF ( .r ` R ) G ) supp ( 0g ` R ) ) = ( G supp ( 0g ` R ) ) ) | 
						
							| 23 | 16 22 | eqtrd |  |-  ( ph -> ( ( F .x. G ) supp ( 0g ` R ) ) = ( G supp ( 0g ` R ) ) ) | 
						
							| 24 | 23 | imaeq2d |  |-  ( ph -> ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( ( F .x. G ) supp ( 0g ` R ) ) ) = ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( G supp ( 0g ` R ) ) ) ) | 
						
							| 25 | 24 | supeq1d |  |-  ( ph -> sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( ( F .x. G ) supp ( 0g ` R ) ) ) , RR* , < ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( G supp ( 0g ` R ) ) ) , RR* , < ) ) | 
						
							| 26 | 1 3 4 | mpllmodd |  |-  ( ph -> Y e. LMod ) | 
						
							| 27 | 1 3 4 | mplsca |  |-  ( ph -> R = ( Scalar ` Y ) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` Y ) ) ) | 
						
							| 29 | 14 28 | eleqtrd |  |-  ( ph -> F e. ( Base ` ( Scalar ` Y ) ) ) | 
						
							| 30 |  | eqid |  |-  ( Scalar ` Y ) = ( Scalar ` Y ) | 
						
							| 31 |  | eqid |  |-  ( Base ` ( Scalar ` Y ) ) = ( Base ` ( Scalar ` Y ) ) | 
						
							| 32 | 5 30 7 31 | lmodvscl |  |-  ( ( Y e. LMod /\ F e. ( Base ` ( Scalar ` Y ) ) /\ G e. B ) -> ( F .x. G ) e. B ) | 
						
							| 33 | 26 29 9 32 | syl3anc |  |-  ( ph -> ( F .x. G ) e. B ) | 
						
							| 34 |  | eqid |  |-  ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) = ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) | 
						
							| 35 | 2 1 5 17 12 34 | mdegval |  |-  ( ( F .x. G ) e. B -> ( D ` ( F .x. G ) ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( ( F .x. G ) supp ( 0g ` R ) ) ) , RR* , < ) ) | 
						
							| 36 | 33 35 | syl |  |-  ( ph -> ( D ` ( F .x. G ) ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( ( F .x. G ) supp ( 0g ` R ) ) ) , RR* , < ) ) | 
						
							| 37 | 2 1 5 17 12 34 | mdegval |  |-  ( G e. B -> ( D ` G ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( G supp ( 0g ` R ) ) ) , RR* , < ) ) | 
						
							| 38 | 9 37 | syl |  |-  ( ph -> ( D ` G ) = sup ( ( ( y e. { x e. ( NN0 ^m I ) | ( `' x " NN ) e. Fin } |-> ( CCfld gsum y ) ) " ( G supp ( 0g ` R ) ) ) , RR* , < ) ) | 
						
							| 39 | 25 36 38 | 3eqtr4d |  |-  ( ph -> ( D ` ( F .x. G ) ) = ( D ` G ) ) |