| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrgval.e |
|- E = ( RLReg ` R ) |
| 2 |
|
rrgval.b |
|- B = ( Base ` R ) |
| 3 |
|
rrgval.t |
|- .x. = ( .r ` R ) |
| 4 |
|
rrgval.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
rrgsupp.i |
|- ( ph -> I e. V ) |
| 6 |
|
rrgsupp.r |
|- ( ph -> R e. Ring ) |
| 7 |
|
rrgsupp.x |
|- ( ph -> X e. E ) |
| 8 |
|
rrgsupp.y |
|- ( ph -> Y : I --> B ) |
| 9 |
7
|
adantr |
|- ( ( ph /\ y e. I ) -> X e. E ) |
| 10 |
|
fvexd |
|- ( ( ph /\ y e. I ) -> ( Y ` y ) e. _V ) |
| 11 |
|
fconstmpt |
|- ( I X. { X } ) = ( y e. I |-> X ) |
| 12 |
11
|
a1i |
|- ( ph -> ( I X. { X } ) = ( y e. I |-> X ) ) |
| 13 |
8
|
feqmptd |
|- ( ph -> Y = ( y e. I |-> ( Y ` y ) ) ) |
| 14 |
5 9 10 12 13
|
offval2 |
|- ( ph -> ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ x e. I ) -> ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) ) |
| 16 |
15
|
fveq1d |
|- ( ( ph /\ x e. I ) -> ( ( ( I X. { X } ) oF .x. Y ) ` x ) = ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) ) |
| 17 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
| 18 |
|
ovex |
|- ( X .x. ( Y ` x ) ) e. _V |
| 19 |
|
fveq2 |
|- ( y = x -> ( Y ` y ) = ( Y ` x ) ) |
| 20 |
19
|
oveq2d |
|- ( y = x -> ( X .x. ( Y ` y ) ) = ( X .x. ( Y ` x ) ) ) |
| 21 |
|
eqid |
|- ( y e. I |-> ( X .x. ( Y ` y ) ) ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) |
| 22 |
20 21
|
fvmptg |
|- ( ( x e. I /\ ( X .x. ( Y ` x ) ) e. _V ) -> ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) = ( X .x. ( Y ` x ) ) ) |
| 23 |
17 18 22
|
sylancl |
|- ( ( ph /\ x e. I ) -> ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) = ( X .x. ( Y ` x ) ) ) |
| 24 |
16 23
|
eqtrd |
|- ( ( ph /\ x e. I ) -> ( ( ( I X. { X } ) oF .x. Y ) ` x ) = ( X .x. ( Y ` x ) ) ) |
| 25 |
24
|
neeq1d |
|- ( ( ph /\ x e. I ) -> ( ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. <-> ( X .x. ( Y ` x ) ) =/= .0. ) ) |
| 26 |
25
|
rabbidva |
|- ( ph -> { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } = { x e. I | ( X .x. ( Y ` x ) ) =/= .0. } ) |
| 27 |
6
|
adantr |
|- ( ( ph /\ x e. I ) -> R e. Ring ) |
| 28 |
7
|
adantr |
|- ( ( ph /\ x e. I ) -> X e. E ) |
| 29 |
8
|
ffvelcdmda |
|- ( ( ph /\ x e. I ) -> ( Y ` x ) e. B ) |
| 30 |
1 2 3 4
|
rrgeq0 |
|- ( ( R e. Ring /\ X e. E /\ ( Y ` x ) e. B ) -> ( ( X .x. ( Y ` x ) ) = .0. <-> ( Y ` x ) = .0. ) ) |
| 31 |
27 28 29 30
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( ( X .x. ( Y ` x ) ) = .0. <-> ( Y ` x ) = .0. ) ) |
| 32 |
31
|
necon3bid |
|- ( ( ph /\ x e. I ) -> ( ( X .x. ( Y ` x ) ) =/= .0. <-> ( Y ` x ) =/= .0. ) ) |
| 33 |
32
|
rabbidva |
|- ( ph -> { x e. I | ( X .x. ( Y ` x ) ) =/= .0. } = { x e. I | ( Y ` x ) =/= .0. } ) |
| 34 |
26 33
|
eqtrd |
|- ( ph -> { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } = { x e. I | ( Y ` x ) =/= .0. } ) |
| 35 |
|
ovex |
|- ( X .x. ( Y ` y ) ) e. _V |
| 36 |
35 21
|
fnmpti |
|- ( y e. I |-> ( X .x. ( Y ` y ) ) ) Fn I |
| 37 |
|
fneq1 |
|- ( ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) -> ( ( ( I X. { X } ) oF .x. Y ) Fn I <-> ( y e. I |-> ( X .x. ( Y ` y ) ) ) Fn I ) ) |
| 38 |
36 37
|
mpbiri |
|- ( ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) -> ( ( I X. { X } ) oF .x. Y ) Fn I ) |
| 39 |
14 38
|
syl |
|- ( ph -> ( ( I X. { X } ) oF .x. Y ) Fn I ) |
| 40 |
4
|
fvexi |
|- .0. e. _V |
| 41 |
40
|
a1i |
|- ( ph -> .0. e. _V ) |
| 42 |
|
suppvalfn |
|- ( ( ( ( I X. { X } ) oF .x. Y ) Fn I /\ I e. V /\ .0. e. _V ) -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } ) |
| 43 |
39 5 41 42
|
syl3anc |
|- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } ) |
| 44 |
8
|
ffnd |
|- ( ph -> Y Fn I ) |
| 45 |
|
suppvalfn |
|- ( ( Y Fn I /\ I e. V /\ .0. e. _V ) -> ( Y supp .0. ) = { x e. I | ( Y ` x ) =/= .0. } ) |
| 46 |
44 5 41 45
|
syl3anc |
|- ( ph -> ( Y supp .0. ) = { x e. I | ( Y ` x ) =/= .0. } ) |
| 47 |
34 43 46
|
3eqtr4d |
|- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = ( Y supp .0. ) ) |