| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrgval.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
| 2 |
|
rrgval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
rrgval.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
rrgval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
rrgsupp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
rrgsupp.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 7 |
|
rrgsupp.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 8 |
|
rrgsupp.y |
⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ 𝐵 ) |
| 9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑋 ∈ 𝐸 ) |
| 10 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑦 ) ∈ V ) |
| 11 |
|
fconstmpt |
⊢ ( 𝐼 × { 𝑋 } ) = ( 𝑦 ∈ 𝐼 ↦ 𝑋 ) |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝐼 × { 𝑋 } ) = ( 𝑦 ∈ 𝐼 ↦ 𝑋 ) ) |
| 13 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝑌 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑦 ) ) ) |
| 14 |
5 9 10 12 13
|
offval2 |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ) |
| 16 |
15
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
| 18 |
|
ovex |
⊢ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ∈ V |
| 19 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑌 ‘ 𝑦 ) = ( 𝑌 ‘ 𝑥 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 21 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) |
| 22 |
20 21
|
fvmptg |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ∈ V ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 23 |
17 18 22
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 24 |
16 23
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) = ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ) |
| 25 |
24
|
neeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 ↔ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 ) ) |
| 26 |
25
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ 𝐼 ∣ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 } ) |
| 27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑋 ∈ 𝐸 ) |
| 29 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑥 ) ∈ 𝐵 ) |
| 30 |
1 2 3 4
|
rrgeq0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ ( 𝑌 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) = 0 ↔ ( 𝑌 ‘ 𝑥 ) = 0 ) ) |
| 31 |
27 28 29 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) = 0 ↔ ( 𝑌 ‘ 𝑥 ) = 0 ) ) |
| 32 |
31
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 ↔ ( 𝑌 ‘ 𝑥 ) ≠ 0 ) ) |
| 33 |
32
|
rabbidva |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐼 ∣ ( 𝑋 · ( 𝑌 ‘ 𝑥 ) ) ≠ 0 } = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 34 |
26 33
|
eqtrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 35 |
|
ovex |
⊢ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ∈ V |
| 36 |
35 21
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) Fn 𝐼 |
| 37 |
|
fneq1 |
⊢ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ↔ ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) Fn 𝐼 ) ) |
| 38 |
36 37
|
mpbiri |
⊢ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑋 · ( 𝑌 ‘ 𝑦 ) ) ) → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ) |
| 39 |
14 38
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ) |
| 40 |
4
|
fvexi |
⊢ 0 ∈ V |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 42 |
|
suppvalfn |
⊢ ( ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } ) |
| 43 |
39 5 41 42
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) ‘ 𝑥 ) ≠ 0 } ) |
| 44 |
8
|
ffnd |
⊢ ( 𝜑 → 𝑌 Fn 𝐼 ) |
| 45 |
|
suppvalfn |
⊢ ( ( 𝑌 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝑌 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 46 |
44 5 41 45
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 supp 0 ) = { 𝑥 ∈ 𝐼 ∣ ( 𝑌 ‘ 𝑥 ) ≠ 0 } ) |
| 47 |
34 43 46
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝑋 } ) ∘f · 𝑌 ) supp 0 ) = ( 𝑌 supp 0 ) ) |