Metamath Proof Explorer


Theorem mplvsca

Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplvsca.p P=ImPolyR
mplvsca.n ˙=P
mplvsca.k K=BaseR
mplvsca.b B=BaseP
mplvsca.m ·˙=R
mplvsca.d D=h0I|h-1Fin
mplvsca.x φXK
mplvsca.f φFB
Assertion mplvsca φX˙F=D×X·˙fF

Proof

Step Hyp Ref Expression
1 mplvsca.p P=ImPolyR
2 mplvsca.n ˙=P
3 mplvsca.k K=BaseR
4 mplvsca.b B=BaseP
5 mplvsca.m ·˙=R
6 mplvsca.d D=h0I|h-1Fin
7 mplvsca.x φXK
8 mplvsca.f φFB
9 eqid ImPwSerR=ImPwSerR
10 1 9 2 mplvsca2 ˙=ImPwSerR
11 eqid BaseImPwSerR=BaseImPwSerR
12 1 9 4 11 mplbasss BBaseImPwSerR
13 12 8 sselid φFBaseImPwSerR
14 9 10 3 11 5 6 7 13 psrvsca φX˙F=D×X·˙fF