Metamath Proof Explorer


Theorem deg1vsca

Description: The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y
|- Y = ( Poly1 ` R )
deg1addle.d
|- D = ( deg1 ` R )
deg1addle.r
|- ( ph -> R e. Ring )
deg1vsca.b
|- B = ( Base ` Y )
deg1vsca.e
|- E = ( RLReg ` R )
deg1vsca.p
|- .x. = ( .s ` Y )
deg1vsca.f
|- ( ph -> F e. E )
deg1vsca.g
|- ( ph -> G e. B )
Assertion deg1vsca
|- ( ph -> ( D ` ( F .x. G ) ) = ( D ` G ) )

Proof

Step Hyp Ref Expression
1 deg1addle.y
 |-  Y = ( Poly1 ` R )
2 deg1addle.d
 |-  D = ( deg1 ` R )
3 deg1addle.r
 |-  ( ph -> R e. Ring )
4 deg1vsca.b
 |-  B = ( Base ` Y )
5 deg1vsca.e
 |-  E = ( RLReg ` R )
6 deg1vsca.p
 |-  .x. = ( .s ` Y )
7 deg1vsca.f
 |-  ( ph -> F e. E )
8 deg1vsca.g
 |-  ( ph -> G e. B )
9 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
10 2 deg1fval
 |-  D = ( 1o mDeg R )
11 1on
 |-  1o e. On
12 11 a1i
 |-  ( ph -> 1o e. On )
13 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
14 1 13 4 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
15 1 9 6 ply1vsca
 |-  .x. = ( .s ` ( 1o mPoly R ) )
16 9 10 12 3 14 5 15 7 8 mdegvsca
 |-  ( ph -> ( D ` ( F .x. G ) ) = ( D ` G ) )