Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdegaddle.y | |
|
mdegaddle.d | |
||
mdegaddle.i | |
||
mdegaddle.r | |
||
mdegvscale.b | |
||
mdegvscale.k | |
||
mdegvscale.p | |
||
mdegvscale.f | |
||
mdegvscale.g | |
||
Assertion | mdegvscale | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdegaddle.y | |
|
2 | mdegaddle.d | |
|
3 | mdegaddle.i | |
|
4 | mdegaddle.r | |
|
5 | mdegvscale.b | |
|
6 | mdegvscale.k | |
|
7 | mdegvscale.p | |
|
8 | mdegvscale.f | |
|
9 | mdegvscale.g | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | 8 | adantr | |
13 | 9 | adantr | |
14 | simpr | |
|
15 | 1 7 6 5 10 11 12 13 14 | mplvscaval | |
16 | 15 | adantrr | |
17 | eqid | |
|
18 | eqid | |
|
19 | 9 | adantr | |
20 | simprl | |
|
21 | simprr | |
|
22 | 2 1 5 17 11 18 19 20 21 | mdeglt | |
23 | 22 | oveq2d | |
24 | 6 10 17 | ringrz | |
25 | 4 8 24 | syl2anc | |
26 | 25 | adantr | |
27 | 16 23 26 | 3eqtrd | |
28 | 27 | expr | |
29 | 28 | ralrimiva | |
30 | 1 | mpllmod | |
31 | 3 4 30 | syl2anc | |
32 | 1 3 4 | mplsca | |
33 | 32 | fveq2d | |
34 | 6 33 | eqtrid | |
35 | 8 34 | eleqtrd | |
36 | eqid | |
|
37 | eqid | |
|
38 | 5 36 7 37 | lmodvscl | |
39 | 31 35 9 38 | syl3anc | |
40 | 2 1 5 | mdegxrcl | |
41 | 9 40 | syl | |
42 | 2 1 5 17 11 18 | mdegleb | |
43 | 39 41 42 | syl2anc | |
44 | 29 43 | mpbird | |