Metamath Proof Explorer


Theorem mdegvscale

Description: The degree of a scalar multiple of a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses mdegaddle.y Y=ImPolyR
mdegaddle.d D=ImDegR
mdegaddle.i φIV
mdegaddle.r φRRing
mdegvscale.b B=BaseY
mdegvscale.k K=BaseR
mdegvscale.p ·˙=Y
mdegvscale.f φFK
mdegvscale.g φGB
Assertion mdegvscale φDF·˙GDG

Proof

Step Hyp Ref Expression
1 mdegaddle.y Y=ImPolyR
2 mdegaddle.d D=ImDegR
3 mdegaddle.i φIV
4 mdegaddle.r φRRing
5 mdegvscale.b B=BaseY
6 mdegvscale.k K=BaseR
7 mdegvscale.p ·˙=Y
8 mdegvscale.f φFK
9 mdegvscale.g φGB
10 eqid R=R
11 eqid a0I|a-1Fin=a0I|a-1Fin
12 8 adantr φxa0I|a-1FinFK
13 9 adantr φxa0I|a-1FinGB
14 simpr φxa0I|a-1Finxa0I|a-1Fin
15 1 7 6 5 10 11 12 13 14 mplvscaval φxa0I|a-1FinF·˙Gx=FRGx
16 15 adantrr φxa0I|a-1FinDG<ba0I|a-1FinfldbxF·˙Gx=FRGx
17 eqid 0R=0R
18 eqid ba0I|a-1Finfldb=ba0I|a-1Finfldb
19 9 adantr φxa0I|a-1FinDG<ba0I|a-1FinfldbxGB
20 simprl φxa0I|a-1FinDG<ba0I|a-1Finfldbxxa0I|a-1Fin
21 simprr φxa0I|a-1FinDG<ba0I|a-1FinfldbxDG<ba0I|a-1Finfldbx
22 2 1 5 17 11 18 19 20 21 mdeglt φxa0I|a-1FinDG<ba0I|a-1FinfldbxGx=0R
23 22 oveq2d φxa0I|a-1FinDG<ba0I|a-1FinfldbxFRGx=FR0R
24 6 10 17 ringrz RRingFKFR0R=0R
25 4 8 24 syl2anc φFR0R=0R
26 25 adantr φxa0I|a-1FinDG<ba0I|a-1FinfldbxFR0R=0R
27 16 23 26 3eqtrd φxa0I|a-1FinDG<ba0I|a-1FinfldbxF·˙Gx=0R
28 27 expr φxa0I|a-1FinDG<ba0I|a-1FinfldbxF·˙Gx=0R
29 28 ralrimiva φxa0I|a-1FinDG<ba0I|a-1FinfldbxF·˙Gx=0R
30 1 mpllmod IVRRingYLMod
31 3 4 30 syl2anc φYLMod
32 1 3 4 mplsca φR=ScalarY
33 32 fveq2d φBaseR=BaseScalarY
34 6 33 eqtrid φK=BaseScalarY
35 8 34 eleqtrd φFBaseScalarY
36 eqid ScalarY=ScalarY
37 eqid BaseScalarY=BaseScalarY
38 5 36 7 37 lmodvscl YLModFBaseScalarYGBF·˙GB
39 31 35 9 38 syl3anc φF·˙GB
40 2 1 5 mdegxrcl GBDG*
41 9 40 syl φDG*
42 2 1 5 17 11 18 mdegleb F·˙GBDG*DF·˙GDGxa0I|a-1FinDG<ba0I|a-1FinfldbxF·˙Gx=0R
43 39 41 42 syl2anc φDF·˙GDGxa0I|a-1FinDG<ba0I|a-1FinfldbxF·˙Gx=0R
44 29 43 mpbird φDF·˙GDG