Metamath Proof Explorer


Theorem mdegxrcl

Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegxrcl.d D = I mDeg R
mdegxrcl.p P = I mPoly R
mdegxrcl.b B = Base P
Assertion mdegxrcl F B D F *

Proof

Step Hyp Ref Expression
1 mdegxrcl.d D = I mDeg R
2 mdegxrcl.p P = I mPoly R
3 mdegxrcl.b B = Base P
4 eqid 0 R = 0 R
5 eqid x 0 I | x -1 Fin = x 0 I | x -1 Fin
6 eqid y x 0 I | x -1 Fin fld y = y x 0 I | x -1 Fin fld y
7 1 2 3 4 5 6 mdegval F B D F = sup y x 0 I | x -1 Fin fld y F supp 0 R * <
8 imassrn y x 0 I | x -1 Fin fld y F supp 0 R ran y x 0 I | x -1 Fin fld y
9 2 3 mplrcl F B I V
10 5 6 tdeglem1 I V y x 0 I | x -1 Fin fld y : x 0 I | x -1 Fin 0
11 frn y x 0 I | x -1 Fin fld y : x 0 I | x -1 Fin 0 ran y x 0 I | x -1 Fin fld y 0
12 9 10 11 3syl F B ran y x 0 I | x -1 Fin fld y 0
13 nn0ssre 0
14 ressxr *
15 13 14 sstri 0 *
16 12 15 sstrdi F B ran y x 0 I | x -1 Fin fld y *
17 8 16 sstrid F B y x 0 I | x -1 Fin fld y F supp 0 R *
18 supxrcl y x 0 I | x -1 Fin fld y F supp 0 R * sup y x 0 I | x -1 Fin fld y F supp 0 R * < *
19 17 18 syl F B sup y x 0 I | x -1 Fin fld y F supp 0 R * < *
20 7 19 eqeltrd F B D F *