Metamath Proof Explorer


Theorem mdegxrcl

Description: Closure of polynomial degree in the extended reals. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegxrcl.d D=ImDegR
mdegxrcl.p P=ImPolyR
mdegxrcl.b B=BaseP
Assertion mdegxrcl FBDF*

Proof

Step Hyp Ref Expression
1 mdegxrcl.d D=ImDegR
2 mdegxrcl.p P=ImPolyR
3 mdegxrcl.b B=BaseP
4 eqid 0R=0R
5 eqid x0I|x-1Fin=x0I|x-1Fin
6 eqid yx0I|x-1Finfldy=yx0I|x-1Finfldy
7 1 2 3 4 5 6 mdegval FBDF=supyx0I|x-1FinfldyFsupp0R*<
8 imassrn yx0I|x-1FinfldyFsupp0Rranyx0I|x-1Finfldy
9 5 6 tdeglem1 yx0I|x-1Finfldy:x0I|x-1Fin0
10 frn yx0I|x-1Finfldy:x0I|x-1Fin0ranyx0I|x-1Finfldy0
11 9 10 mp1i FBranyx0I|x-1Finfldy0
12 nn0ssre 0
13 ressxr *
14 12 13 sstri 0*
15 11 14 sstrdi FBranyx0I|x-1Finfldy*
16 8 15 sstrid FByx0I|x-1FinfldyFsupp0R*
17 supxrcl yx0I|x-1FinfldyFsupp0R*supyx0I|x-1FinfldyFsupp0R*<*
18 16 17 syl FBsupyx0I|x-1FinfldyFsupp0R*<*
19 7 18 eqeltrd FBDF*