| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
| 4 |
|
r1padd1.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
| 5 |
|
r1p0.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
r1p0.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑁 ) |
| 7 |
|
r1p0.0 |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 8 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 11 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 0 ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) 0 ) ) |
| 12 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 14 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 15 |
2 7
|
ring0cl |
⊢ ( 𝑃 ∈ Ring → 0 ∈ 𝑈 ) |
| 16 |
5 14 15
|
3syl |
⊢ ( 𝜑 → 0 ∈ 𝑈 ) |
| 17 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 20 |
2 17 18 19 7
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ 0 ∈ 𝑈 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) 0 ) = 0 ) |
| 21 |
13 16 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) 0 ) = 0 ) |
| 22 |
11 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 0 ) = 0 ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 0 ) 𝐸 𝐷 ) = ( 0 𝐸 𝐷 ) ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 26 |
24 25
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
5 26
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
1 2 3 4 5 16 6 18 24 27
|
r1pvsca |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 0 ) 𝐸 𝐷 ) = ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 𝐸 𝐷 ) ) ) |
| 29 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) ( 0 𝐸 𝐷 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 𝐸 𝐷 ) ) ) |
| 30 |
4 1 2 3
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 0 ∈ 𝑈 ∧ 𝐷 ∈ 𝑁 ) → ( 0 𝐸 𝐷 ) ∈ 𝑈 ) |
| 31 |
5 16 6 30
|
syl3anc |
⊢ ( 𝜑 → ( 0 𝐸 𝐷 ) ∈ 𝑈 ) |
| 32 |
2 17 18 19 7
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 0 𝐸 𝐷 ) ∈ 𝑈 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 𝐸 𝐷 ) ) = 0 ) |
| 33 |
13 31 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠 ‘ 𝑃 ) ( 0 𝐸 𝐷 ) ) = 0 ) |
| 34 |
28 29 33
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑅 ) ( ·𝑠 ‘ 𝑃 ) 0 ) 𝐸 𝐷 ) = 0 ) |
| 35 |
23 34
|
eqtr3d |
⊢ ( 𝜑 → ( 0 𝐸 𝐷 ) = 0 ) |