Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
16 |
|
algextdeglem.r |
|- R = ( rem1p ` K ) |
17 |
|
algextdeglem.h |
|- H = ( p e. U |-> ( p R ( M ` A ) ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem5 |
|- ( ph -> Z = ( ( RSpan ` P ) ` { ( M ` A ) } ) ) |
19 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
20 |
6 19
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
21 |
1
|
subrgring |
|- ( F e. ( SubRing ` E ) -> K e. Ring ) |
22 |
20 21
|
syl |
|- ( ph -> K e. Ring ) |
23 |
9
|
ply1ring |
|- ( K e. Ring -> P e. Ring ) |
24 |
22 23
|
syl |
|- ( ph -> P e. Ring ) |
25 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
26 |
9 25
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
28 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
29 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
30 |
8 1 27 28 29 20
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
31 |
30 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
32 |
|
eqid |
|- { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } = { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } |
33 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
34 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
35 |
8 26 27 5 6 31 28 32 33 34 4
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |
36 |
35 10
|
eleqtrrdi |
|- ( ph -> ( M ` A ) e. U ) |
37 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
38 |
10 33 37
|
rspsn |
|- ( ( P e. Ring /\ ( M ` A ) e. U ) -> ( ( RSpan ` P ) ` { ( M ` A ) } ) = { p | ( M ` A ) ( ||r ` P ) p } ) |
39 |
24 36 38
|
syl2anc |
|- ( ph -> ( ( RSpan ` P ) ` { ( M ` A ) } ) = { p | ( M ` A ) ( ||r ` P ) p } ) |
40 |
|
nfv |
|- F/ p ph |
41 |
|
nfab1 |
|- F/_ p { p | ( M ` A ) ( ||r ` P ) p } |
42 |
|
nfrab1 |
|- F/_ p { p e. U | ( H ` p ) = ( 0g ` P ) } |
43 |
10 37
|
dvdsrcl2 |
|- ( ( P e. Ring /\ ( M ` A ) ( ||r ` P ) p ) -> p e. U ) |
44 |
43
|
ex |
|- ( P e. Ring -> ( ( M ` A ) ( ||r ` P ) p -> p e. U ) ) |
45 |
44
|
pm4.71rd |
|- ( P e. Ring -> ( ( M ` A ) ( ||r ` P ) p <-> ( p e. U /\ ( M ` A ) ( ||r ` P ) p ) ) ) |
46 |
24 45
|
syl |
|- ( ph -> ( ( M ` A ) ( ||r ` P ) p <-> ( p e. U /\ ( M ` A ) ( ||r ` P ) p ) ) ) |
47 |
22
|
adantr |
|- ( ( ph /\ p e. U ) -> K e. Ring ) |
48 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
49 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
50 |
1
|
fveq2i |
|- ( Monic1p ` K ) = ( Monic1p ` ( E |`s F ) ) |
51 |
49 5 6 4 7 50
|
minplym1p |
|- ( ph -> ( M ` A ) e. ( Monic1p ` K ) ) |
52 |
|
eqid |
|- ( Unic1p ` K ) = ( Unic1p ` K ) |
53 |
|
eqid |
|- ( Monic1p ` K ) = ( Monic1p ` K ) |
54 |
52 53
|
mon1puc1p |
|- ( ( K e. Ring /\ ( M ` A ) e. ( Monic1p ` K ) ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
55 |
22 51 54
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( Unic1p ` K ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ p e. U ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
57 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
58 |
9 37 10 52 57 16
|
dvdsr1p |
|- ( ( K e. Ring /\ p e. U /\ ( M ` A ) e. ( Unic1p ` K ) ) -> ( ( M ` A ) ( ||r ` P ) p <-> ( p R ( M ` A ) ) = ( 0g ` P ) ) ) |
59 |
47 48 56 58
|
syl3anc |
|- ( ( ph /\ p e. U ) -> ( ( M ` A ) ( ||r ` P ) p <-> ( p R ( M ` A ) ) = ( 0g ` P ) ) ) |
60 |
|
ovexd |
|- ( ( ph /\ p e. U ) -> ( p R ( M ` A ) ) e. _V ) |
61 |
17
|
fvmpt2 |
|- ( ( p e. U /\ ( p R ( M ` A ) ) e. _V ) -> ( H ` p ) = ( p R ( M ` A ) ) ) |
62 |
48 60 61
|
syl2anc |
|- ( ( ph /\ p e. U ) -> ( H ` p ) = ( p R ( M ` A ) ) ) |
63 |
62
|
eqeq1d |
|- ( ( ph /\ p e. U ) -> ( ( H ` p ) = ( 0g ` P ) <-> ( p R ( M ` A ) ) = ( 0g ` P ) ) ) |
64 |
59 63
|
bitr4d |
|- ( ( ph /\ p e. U ) -> ( ( M ` A ) ( ||r ` P ) p <-> ( H ` p ) = ( 0g ` P ) ) ) |
65 |
64
|
pm5.32da |
|- ( ph -> ( ( p e. U /\ ( M ` A ) ( ||r ` P ) p ) <-> ( p e. U /\ ( H ` p ) = ( 0g ` P ) ) ) ) |
66 |
46 65
|
bitrd |
|- ( ph -> ( ( M ` A ) ( ||r ` P ) p <-> ( p e. U /\ ( H ` p ) = ( 0g ` P ) ) ) ) |
67 |
|
abid |
|- ( p e. { p | ( M ` A ) ( ||r ` P ) p } <-> ( M ` A ) ( ||r ` P ) p ) |
68 |
|
rabid |
|- ( p e. { p e. U | ( H ` p ) = ( 0g ` P ) } <-> ( p e. U /\ ( H ` p ) = ( 0g ` P ) ) ) |
69 |
66 67 68
|
3bitr4g |
|- ( ph -> ( p e. { p | ( M ` A ) ( ||r ` P ) p } <-> p e. { p e. U | ( H ` p ) = ( 0g ` P ) } ) ) |
70 |
40 41 42 69
|
eqrd |
|- ( ph -> { p | ( M ` A ) ( ||r ` P ) p } = { p e. U | ( H ` p ) = ( 0g ` P ) } ) |
71 |
40 60 17
|
fnmptd |
|- ( ph -> H Fn U ) |
72 |
|
fniniseg2 |
|- ( H Fn U -> ( `' H " { ( 0g ` P ) } ) = { p e. U | ( H ` p ) = ( 0g ` P ) } ) |
73 |
71 72
|
syl |
|- ( ph -> ( `' H " { ( 0g ` P ) } ) = { p e. U | ( H ` p ) = ( 0g ` P ) } ) |
74 |
70 73
|
eqtr4d |
|- ( ph -> { p | ( M ` A ) ( ||r ` P ) p } = ( `' H " { ( 0g ` P ) } ) ) |
75 |
18 39 74
|
3eqtrd |
|- ( ph -> Z = ( `' H " { ( 0g ` P ) } ) ) |
76 |
75
|
oveq2d |
|- ( ph -> ( P ~QG Z ) = ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) |
77 |
76
|
oveq2d |
|- ( ph -> ( P /s ( P ~QG Z ) ) = ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) ) |
78 |
14 77
|
eqtrid |
|- ( ph -> Q = ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) ) |
79 |
|
eqid |
|- ( `' H " { ( 0g ` P ) } ) = ( `' H " { ( 0g ` P ) } ) |
80 |
|
eqid |
|- ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) = ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) |
81 |
9 10 16 52 17 22 55 57 79 80
|
r1pquslmic |
|- ( ph -> ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) ~=m ( H "s P ) ) |
82 |
78 81
|
eqbrtrd |
|- ( ph -> Q ~=m ( H "s P ) ) |
83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem3 |
|- ( ph -> Q e. LVec ) |
84 |
82 83
|
lmicdim |
|- ( ph -> ( dim ` Q ) = ( dim ` ( H "s P ) ) ) |