| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
| 2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
| 3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
| 4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
| 5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
| 6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
| 8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
| 9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
| 10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
| 11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
| 12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
| 13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
| 14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
| 15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
| 16 |
|
algextdeglem.r |
|- R = ( rem1p ` K ) |
| 17 |
|
algextdeglem.h |
|- H = ( p e. U |-> ( p R ( M ` A ) ) ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem5 |
|- ( ph -> Z = ( ( RSpan ` P ) ` { ( M ` A ) } ) ) |
| 19 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
| 20 |
6 19
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 21 |
1
|
subrgring |
|- ( F e. ( SubRing ` E ) -> K e. Ring ) |
| 22 |
20 21
|
syl |
|- ( ph -> K e. Ring ) |
| 23 |
9
|
ply1ring |
|- ( K e. Ring -> P e. Ring ) |
| 24 |
22 23
|
syl |
|- ( ph -> P e. Ring ) |
| 25 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
| 26 |
9 25
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
| 27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 28 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 29 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 30 |
8 1 27 28 29 20
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
| 31 |
30 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
| 32 |
|
eqid |
|- { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } = { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } |
| 33 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
| 34 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
| 35 |
8 26 27 5 6 31 28 32 33 34 4
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |
| 36 |
35 10
|
eleqtrrdi |
|- ( ph -> ( M ` A ) e. U ) |
| 37 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
| 38 |
10 33 37
|
rspsn |
|- ( ( P e. Ring /\ ( M ` A ) e. U ) -> ( ( RSpan ` P ) ` { ( M ` A ) } ) = { p | ( M ` A ) ( ||r ` P ) p } ) |
| 39 |
24 36 38
|
syl2anc |
|- ( ph -> ( ( RSpan ` P ) ` { ( M ` A ) } ) = { p | ( M ` A ) ( ||r ` P ) p } ) |
| 40 |
|
nfv |
|- F/ p ph |
| 41 |
|
nfab1 |
|- F/_ p { p | ( M ` A ) ( ||r ` P ) p } |
| 42 |
|
nfrab1 |
|- F/_ p { p e. U | ( H ` p ) = ( 0g ` P ) } |
| 43 |
10 37
|
dvdsrcl2 |
|- ( ( P e. Ring /\ ( M ` A ) ( ||r ` P ) p ) -> p e. U ) |
| 44 |
43
|
ex |
|- ( P e. Ring -> ( ( M ` A ) ( ||r ` P ) p -> p e. U ) ) |
| 45 |
44
|
pm4.71rd |
|- ( P e. Ring -> ( ( M ` A ) ( ||r ` P ) p <-> ( p e. U /\ ( M ` A ) ( ||r ` P ) p ) ) ) |
| 46 |
24 45
|
syl |
|- ( ph -> ( ( M ` A ) ( ||r ` P ) p <-> ( p e. U /\ ( M ` A ) ( ||r ` P ) p ) ) ) |
| 47 |
22
|
adantr |
|- ( ( ph /\ p e. U ) -> K e. Ring ) |
| 48 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
| 49 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
| 50 |
1
|
fveq2i |
|- ( Monic1p ` K ) = ( Monic1p ` ( E |`s F ) ) |
| 51 |
49 5 6 4 7 50
|
minplym1p |
|- ( ph -> ( M ` A ) e. ( Monic1p ` K ) ) |
| 52 |
|
eqid |
|- ( Unic1p ` K ) = ( Unic1p ` K ) |
| 53 |
|
eqid |
|- ( Monic1p ` K ) = ( Monic1p ` K ) |
| 54 |
52 53
|
mon1puc1p |
|- ( ( K e. Ring /\ ( M ` A ) e. ( Monic1p ` K ) ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
| 55 |
22 51 54
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( Unic1p ` K ) ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ p e. U ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
| 57 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 58 |
9 37 10 52 57 16
|
dvdsr1p |
|- ( ( K e. Ring /\ p e. U /\ ( M ` A ) e. ( Unic1p ` K ) ) -> ( ( M ` A ) ( ||r ` P ) p <-> ( p R ( M ` A ) ) = ( 0g ` P ) ) ) |
| 59 |
47 48 56 58
|
syl3anc |
|- ( ( ph /\ p e. U ) -> ( ( M ` A ) ( ||r ` P ) p <-> ( p R ( M ` A ) ) = ( 0g ` P ) ) ) |
| 60 |
|
ovexd |
|- ( ( ph /\ p e. U ) -> ( p R ( M ` A ) ) e. _V ) |
| 61 |
17
|
fvmpt2 |
|- ( ( p e. U /\ ( p R ( M ` A ) ) e. _V ) -> ( H ` p ) = ( p R ( M ` A ) ) ) |
| 62 |
48 60 61
|
syl2anc |
|- ( ( ph /\ p e. U ) -> ( H ` p ) = ( p R ( M ` A ) ) ) |
| 63 |
62
|
eqeq1d |
|- ( ( ph /\ p e. U ) -> ( ( H ` p ) = ( 0g ` P ) <-> ( p R ( M ` A ) ) = ( 0g ` P ) ) ) |
| 64 |
59 63
|
bitr4d |
|- ( ( ph /\ p e. U ) -> ( ( M ` A ) ( ||r ` P ) p <-> ( H ` p ) = ( 0g ` P ) ) ) |
| 65 |
64
|
pm5.32da |
|- ( ph -> ( ( p e. U /\ ( M ` A ) ( ||r ` P ) p ) <-> ( p e. U /\ ( H ` p ) = ( 0g ` P ) ) ) ) |
| 66 |
46 65
|
bitrd |
|- ( ph -> ( ( M ` A ) ( ||r ` P ) p <-> ( p e. U /\ ( H ` p ) = ( 0g ` P ) ) ) ) |
| 67 |
|
abid |
|- ( p e. { p | ( M ` A ) ( ||r ` P ) p } <-> ( M ` A ) ( ||r ` P ) p ) |
| 68 |
|
rabid |
|- ( p e. { p e. U | ( H ` p ) = ( 0g ` P ) } <-> ( p e. U /\ ( H ` p ) = ( 0g ` P ) ) ) |
| 69 |
66 67 68
|
3bitr4g |
|- ( ph -> ( p e. { p | ( M ` A ) ( ||r ` P ) p } <-> p e. { p e. U | ( H ` p ) = ( 0g ` P ) } ) ) |
| 70 |
40 41 42 69
|
eqrd |
|- ( ph -> { p | ( M ` A ) ( ||r ` P ) p } = { p e. U | ( H ` p ) = ( 0g ` P ) } ) |
| 71 |
40 60 17
|
fnmptd |
|- ( ph -> H Fn U ) |
| 72 |
|
fniniseg2 |
|- ( H Fn U -> ( `' H " { ( 0g ` P ) } ) = { p e. U | ( H ` p ) = ( 0g ` P ) } ) |
| 73 |
71 72
|
syl |
|- ( ph -> ( `' H " { ( 0g ` P ) } ) = { p e. U | ( H ` p ) = ( 0g ` P ) } ) |
| 74 |
70 73
|
eqtr4d |
|- ( ph -> { p | ( M ` A ) ( ||r ` P ) p } = ( `' H " { ( 0g ` P ) } ) ) |
| 75 |
18 39 74
|
3eqtrd |
|- ( ph -> Z = ( `' H " { ( 0g ` P ) } ) ) |
| 76 |
75
|
oveq2d |
|- ( ph -> ( P ~QG Z ) = ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) |
| 77 |
76
|
oveq2d |
|- ( ph -> ( P /s ( P ~QG Z ) ) = ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) ) |
| 78 |
14 77
|
eqtrid |
|- ( ph -> Q = ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) ) |
| 79 |
|
eqid |
|- ( `' H " { ( 0g ` P ) } ) = ( `' H " { ( 0g ` P ) } ) |
| 80 |
|
eqid |
|- ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) = ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) |
| 81 |
9 10 16 52 17 22 55 57 79 80
|
r1pquslmic |
|- ( ph -> ( P /s ( P ~QG ( `' H " { ( 0g ` P ) } ) ) ) ~=m ( H "s P ) ) |
| 82 |
78 81
|
eqbrtrd |
|- ( ph -> Q ~=m ( H "s P ) ) |
| 83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem3 |
|- ( ph -> Q e. LVec ) |
| 84 |
82 83
|
lmicdim |
|- ( ph -> ( dim ` Q ) = ( dim ` ( H "s P ) ) ) |