Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsq1p.p |
|- P = ( Poly1 ` R ) |
2 |
|
dvdsq1p.d |
|- .|| = ( ||r ` P ) |
3 |
|
dvdsq1p.b |
|- B = ( Base ` P ) |
4 |
|
dvdsq1p.c |
|- C = ( Unic1p ` R ) |
5 |
|
dvdsr1p.z |
|- .0. = ( 0g ` P ) |
6 |
|
dvdsr1p.e |
|- E = ( rem1p ` R ) |
7 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
8 |
7
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> P e. Ring ) |
9 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
10 |
8 9
|
syl |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> P e. Grp ) |
11 |
|
simp2 |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> F e. B ) |
12 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
13 |
12 1 3 4
|
q1pcl |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F ( quot1p ` R ) G ) e. B ) |
14 |
1 3 4
|
uc1pcl |
|- ( G e. C -> G e. B ) |
15 |
14
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> G e. B ) |
16 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
17 |
3 16
|
ringcl |
|- ( ( P e. Ring /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) |
18 |
8 13 15 17
|
syl3anc |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) |
19 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
20 |
3 5 19
|
grpsubeq0 |
|- ( ( P e. Grp /\ F e. B /\ ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) -> ( ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = .0. <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
21 |
10 11 18 20
|
syl3anc |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = .0. <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
22 |
6 1 3 12 16 19
|
r1pval |
|- ( ( F e. B /\ G e. B ) -> ( F E G ) = ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
23 |
11 15 22
|
syl2anc |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F E G ) = ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
24 |
23
|
eqeq1d |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F E G ) = .0. <-> ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) = .0. ) ) |
25 |
1 2 3 4 16 12
|
dvdsq1p |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( G .|| F <-> F = ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
26 |
21 24 25
|
3bitr4rd |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( G .|| F <-> ( F E G ) = .0. ) ) |