| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1rem.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
ply1rem.b |
|- B = ( Base ` P ) |
| 3 |
|
ply1rem.k |
|- K = ( Base ` R ) |
| 4 |
|
ply1rem.x |
|- X = ( var1 ` R ) |
| 5 |
|
ply1rem.m |
|- .- = ( -g ` P ) |
| 6 |
|
ply1rem.a |
|- A = ( algSc ` P ) |
| 7 |
|
ply1rem.g |
|- G = ( X .- ( A ` N ) ) |
| 8 |
|
ply1rem.o |
|- O = ( eval1 ` R ) |
| 9 |
|
ply1rem.1 |
|- ( ph -> R e. NzRing ) |
| 10 |
|
ply1rem.2 |
|- ( ph -> R e. CRing ) |
| 11 |
|
ply1rem.3 |
|- ( ph -> N e. K ) |
| 12 |
|
ply1rem.u |
|- U = ( Monic1p ` R ) |
| 13 |
|
ply1rem.d |
|- D = ( deg1 ` R ) |
| 14 |
|
ply1rem.z |
|- .0. = ( 0g ` R ) |
| 15 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 16 |
9 15
|
syl |
|- ( ph -> R e. Ring ) |
| 17 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 18 |
16 17
|
syl |
|- ( ph -> P e. Ring ) |
| 19 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
| 20 |
18 19
|
syl |
|- ( ph -> P e. Grp ) |
| 21 |
4 1 2
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
| 22 |
16 21
|
syl |
|- ( ph -> X e. B ) |
| 23 |
1 6 3 2
|
ply1sclf |
|- ( R e. Ring -> A : K --> B ) |
| 24 |
16 23
|
syl |
|- ( ph -> A : K --> B ) |
| 25 |
24 11
|
ffvelcdmd |
|- ( ph -> ( A ` N ) e. B ) |
| 26 |
2 5
|
grpsubcl |
|- ( ( P e. Grp /\ X e. B /\ ( A ` N ) e. B ) -> ( X .- ( A ` N ) ) e. B ) |
| 27 |
20 22 25 26
|
syl3anc |
|- ( ph -> ( X .- ( A ` N ) ) e. B ) |
| 28 |
7 27
|
eqeltrid |
|- ( ph -> G e. B ) |
| 29 |
7
|
fveq2i |
|- ( D ` G ) = ( D ` ( X .- ( A ` N ) ) ) |
| 30 |
13 1 2
|
deg1xrcl |
|- ( ( A ` N ) e. B -> ( D ` ( A ` N ) ) e. RR* ) |
| 31 |
25 30
|
syl |
|- ( ph -> ( D ` ( A ` N ) ) e. RR* ) |
| 32 |
|
0xr |
|- 0 e. RR* |
| 33 |
32
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 34 |
|
1re |
|- 1 e. RR |
| 35 |
|
rexr |
|- ( 1 e. RR -> 1 e. RR* ) |
| 36 |
34 35
|
mp1i |
|- ( ph -> 1 e. RR* ) |
| 37 |
13 1 3 6
|
deg1sclle |
|- ( ( R e. Ring /\ N e. K ) -> ( D ` ( A ` N ) ) <_ 0 ) |
| 38 |
16 11 37
|
syl2anc |
|- ( ph -> ( D ` ( A ` N ) ) <_ 0 ) |
| 39 |
|
0lt1 |
|- 0 < 1 |
| 40 |
39
|
a1i |
|- ( ph -> 0 < 1 ) |
| 41 |
31 33 36 38 40
|
xrlelttrd |
|- ( ph -> ( D ` ( A ` N ) ) < 1 ) |
| 42 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 43 |
42 2
|
mgpbas |
|- B = ( Base ` ( mulGrp ` P ) ) |
| 44 |
|
eqid |
|- ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) |
| 45 |
43 44
|
mulg1 |
|- ( X e. B -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X ) |
| 46 |
22 45
|
syl |
|- ( ph -> ( 1 ( .g ` ( mulGrp ` P ) ) X ) = X ) |
| 47 |
46
|
fveq2d |
|- ( ph -> ( D ` ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( D ` X ) ) |
| 48 |
|
1nn0 |
|- 1 e. NN0 |
| 49 |
13 1 4 42 44
|
deg1pw |
|- ( ( R e. NzRing /\ 1 e. NN0 ) -> ( D ` ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = 1 ) |
| 50 |
9 48 49
|
sylancl |
|- ( ph -> ( D ` ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = 1 ) |
| 51 |
47 50
|
eqtr3d |
|- ( ph -> ( D ` X ) = 1 ) |
| 52 |
41 51
|
breqtrrd |
|- ( ph -> ( D ` ( A ` N ) ) < ( D ` X ) ) |
| 53 |
1 13 16 2 5 22 25 52
|
deg1sub |
|- ( ph -> ( D ` ( X .- ( A ` N ) ) ) = ( D ` X ) ) |
| 54 |
29 53
|
eqtrid |
|- ( ph -> ( D ` G ) = ( D ` X ) ) |
| 55 |
54 51
|
eqtrd |
|- ( ph -> ( D ` G ) = 1 ) |
| 56 |
55 48
|
eqeltrdi |
|- ( ph -> ( D ` G ) e. NN0 ) |
| 57 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 58 |
13 1 57 2
|
deg1nn0clb |
|- ( ( R e. Ring /\ G e. B ) -> ( G =/= ( 0g ` P ) <-> ( D ` G ) e. NN0 ) ) |
| 59 |
16 28 58
|
syl2anc |
|- ( ph -> ( G =/= ( 0g ` P ) <-> ( D ` G ) e. NN0 ) ) |
| 60 |
56 59
|
mpbird |
|- ( ph -> G =/= ( 0g ` P ) ) |
| 61 |
55
|
fveq2d |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) = ( ( coe1 ` G ) ` 1 ) ) |
| 62 |
7
|
fveq2i |
|- ( coe1 ` G ) = ( coe1 ` ( X .- ( A ` N ) ) ) |
| 63 |
62
|
fveq1i |
|- ( ( coe1 ` G ) ` 1 ) = ( ( coe1 ` ( X .- ( A ` N ) ) ) ` 1 ) |
| 64 |
48
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 65 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 66 |
1 2 5 65
|
coe1subfv |
|- ( ( ( R e. Ring /\ X e. B /\ ( A ` N ) e. B ) /\ 1 e. NN0 ) -> ( ( coe1 ` ( X .- ( A ` N ) ) ) ` 1 ) = ( ( ( coe1 ` X ) ` 1 ) ( -g ` R ) ( ( coe1 ` ( A ` N ) ) ` 1 ) ) ) |
| 67 |
16 22 25 64 66
|
syl31anc |
|- ( ph -> ( ( coe1 ` ( X .- ( A ` N ) ) ) ` 1 ) = ( ( ( coe1 ` X ) ` 1 ) ( -g ` R ) ( ( coe1 ` ( A ` N ) ) ` 1 ) ) ) |
| 68 |
63 67
|
eqtrid |
|- ( ph -> ( ( coe1 ` G ) ` 1 ) = ( ( ( coe1 ` X ) ` 1 ) ( -g ` R ) ( ( coe1 ` ( A ` N ) ) ` 1 ) ) ) |
| 69 |
46
|
oveq2d |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = ( ( 1r ` R ) ( .s ` P ) X ) ) |
| 70 |
1
|
ply1sca |
|- ( R e. NzRing -> R = ( Scalar ` P ) ) |
| 71 |
9 70
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 72 |
71
|
fveq2d |
|- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) X ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) X ) ) |
| 74 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 75 |
16 74
|
syl |
|- ( ph -> P e. LMod ) |
| 76 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 77 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 78 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
| 79 |
2 76 77 78
|
lmodvs1 |
|- ( ( P e. LMod /\ X e. B ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) X ) = X ) |
| 80 |
75 22 79
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) X ) = X ) |
| 81 |
69 73 80
|
3eqtrd |
|- ( ph -> ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) = X ) |
| 82 |
81
|
fveq2d |
|- ( ph -> ( coe1 ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) = ( coe1 ` X ) ) |
| 83 |
82
|
fveq1d |
|- ( ph -> ( ( coe1 ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) = ( ( coe1 ` X ) ` 1 ) ) |
| 84 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 85 |
3 84
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. K ) |
| 86 |
16 85
|
syl |
|- ( ph -> ( 1r ` R ) e. K ) |
| 87 |
14 3 1 4 77 42 44
|
coe1tmfv1 |
|- ( ( R e. Ring /\ ( 1r ` R ) e. K /\ 1 e. NN0 ) -> ( ( coe1 ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) = ( 1r ` R ) ) |
| 88 |
16 86 64 87
|
syl3anc |
|- ( ph -> ( ( coe1 ` ( ( 1r ` R ) ( .s ` P ) ( 1 ( .g ` ( mulGrp ` P ) ) X ) ) ) ` 1 ) = ( 1r ` R ) ) |
| 89 |
83 88
|
eqtr3d |
|- ( ph -> ( ( coe1 ` X ) ` 1 ) = ( 1r ` R ) ) |
| 90 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 91 |
1 6 3 90
|
coe1scl |
|- ( ( R e. Ring /\ N e. K ) -> ( coe1 ` ( A ` N ) ) = ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) ) |
| 92 |
16 11 91
|
syl2anc |
|- ( ph -> ( coe1 ` ( A ` N ) ) = ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) ) |
| 93 |
92
|
fveq1d |
|- ( ph -> ( ( coe1 ` ( A ` N ) ) ` 1 ) = ( ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) ` 1 ) ) |
| 94 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 95 |
|
neeq1 |
|- ( x = 1 -> ( x =/= 0 <-> 1 =/= 0 ) ) |
| 96 |
94 95
|
mpbiri |
|- ( x = 1 -> x =/= 0 ) |
| 97 |
|
ifnefalse |
|- ( x =/= 0 -> if ( x = 0 , N , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 98 |
96 97
|
syl |
|- ( x = 1 -> if ( x = 0 , N , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 99 |
|
eqid |
|- ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) = ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) |
| 100 |
|
fvex |
|- ( 0g ` R ) e. _V |
| 101 |
98 99 100
|
fvmpt |
|- ( 1 e. NN0 -> ( ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) ` 1 ) = ( 0g ` R ) ) |
| 102 |
48 101
|
ax-mp |
|- ( ( x e. NN0 |-> if ( x = 0 , N , ( 0g ` R ) ) ) ` 1 ) = ( 0g ` R ) |
| 103 |
93 102
|
eqtrdi |
|- ( ph -> ( ( coe1 ` ( A ` N ) ) ` 1 ) = ( 0g ` R ) ) |
| 104 |
89 103
|
oveq12d |
|- ( ph -> ( ( ( coe1 ` X ) ` 1 ) ( -g ` R ) ( ( coe1 ` ( A ` N ) ) ` 1 ) ) = ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) ) |
| 105 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 106 |
16 105
|
syl |
|- ( ph -> R e. Grp ) |
| 107 |
3 90 65
|
grpsubid1 |
|- ( ( R e. Grp /\ ( 1r ` R ) e. K ) -> ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) = ( 1r ` R ) ) |
| 108 |
106 86 107
|
syl2anc |
|- ( ph -> ( ( 1r ` R ) ( -g ` R ) ( 0g ` R ) ) = ( 1r ` R ) ) |
| 109 |
104 108
|
eqtrd |
|- ( ph -> ( ( ( coe1 ` X ) ` 1 ) ( -g ` R ) ( ( coe1 ` ( A ` N ) ) ` 1 ) ) = ( 1r ` R ) ) |
| 110 |
61 68 109
|
3eqtrd |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) = ( 1r ` R ) ) |
| 111 |
1 2 57 13 12 84
|
ismon1p |
|- ( G e. U <-> ( G e. B /\ G =/= ( 0g ` P ) /\ ( ( coe1 ` G ) ` ( D ` G ) ) = ( 1r ` R ) ) ) |
| 112 |
28 60 110 111
|
syl3anbrc |
|- ( ph -> G e. U ) |
| 113 |
7
|
fveq2i |
|- ( O ` G ) = ( O ` ( X .- ( A ` N ) ) ) |
| 114 |
113
|
fveq1i |
|- ( ( O ` G ) ` x ) = ( ( O ` ( X .- ( A ` N ) ) ) ` x ) |
| 115 |
10
|
adantr |
|- ( ( ph /\ x e. K ) -> R e. CRing ) |
| 116 |
|
simpr |
|- ( ( ph /\ x e. K ) -> x e. K ) |
| 117 |
8 4 3 1 2 115 116
|
evl1vard |
|- ( ( ph /\ x e. K ) -> ( X e. B /\ ( ( O ` X ) ` x ) = x ) ) |
| 118 |
11
|
adantr |
|- ( ( ph /\ x e. K ) -> N e. K ) |
| 119 |
8 1 3 6 2 115 118 116
|
evl1scad |
|- ( ( ph /\ x e. K ) -> ( ( A ` N ) e. B /\ ( ( O ` ( A ` N ) ) ` x ) = N ) ) |
| 120 |
8 1 3 2 115 116 117 119 5 65
|
evl1subd |
|- ( ( ph /\ x e. K ) -> ( ( X .- ( A ` N ) ) e. B /\ ( ( O ` ( X .- ( A ` N ) ) ) ` x ) = ( x ( -g ` R ) N ) ) ) |
| 121 |
120
|
simprd |
|- ( ( ph /\ x e. K ) -> ( ( O ` ( X .- ( A ` N ) ) ) ` x ) = ( x ( -g ` R ) N ) ) |
| 122 |
114 121
|
eqtrid |
|- ( ( ph /\ x e. K ) -> ( ( O ` G ) ` x ) = ( x ( -g ` R ) N ) ) |
| 123 |
122
|
eqeq1d |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` G ) ` x ) = .0. <-> ( x ( -g ` R ) N ) = .0. ) ) |
| 124 |
106
|
adantr |
|- ( ( ph /\ x e. K ) -> R e. Grp ) |
| 125 |
3 14 65
|
grpsubeq0 |
|- ( ( R e. Grp /\ x e. K /\ N e. K ) -> ( ( x ( -g ` R ) N ) = .0. <-> x = N ) ) |
| 126 |
124 116 118 125
|
syl3anc |
|- ( ( ph /\ x e. K ) -> ( ( x ( -g ` R ) N ) = .0. <-> x = N ) ) |
| 127 |
123 126
|
bitrd |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` G ) ` x ) = .0. <-> x = N ) ) |
| 128 |
|
velsn |
|- ( x e. { N } <-> x = N ) |
| 129 |
127 128
|
bitr4di |
|- ( ( ph /\ x e. K ) -> ( ( ( O ` G ) ` x ) = .0. <-> x e. { N } ) ) |
| 130 |
129
|
pm5.32da |
|- ( ph -> ( ( x e. K /\ ( ( O ` G ) ` x ) = .0. ) <-> ( x e. K /\ x e. { N } ) ) ) |
| 131 |
|
eqid |
|- ( R ^s K ) = ( R ^s K ) |
| 132 |
|
eqid |
|- ( Base ` ( R ^s K ) ) = ( Base ` ( R ^s K ) ) |
| 133 |
3
|
fvexi |
|- K e. _V |
| 134 |
133
|
a1i |
|- ( ph -> K e. _V ) |
| 135 |
8 1 131 3
|
evl1rhm |
|- ( R e. CRing -> O e. ( P RingHom ( R ^s K ) ) ) |
| 136 |
10 135
|
syl |
|- ( ph -> O e. ( P RingHom ( R ^s K ) ) ) |
| 137 |
2 132
|
rhmf |
|- ( O e. ( P RingHom ( R ^s K ) ) -> O : B --> ( Base ` ( R ^s K ) ) ) |
| 138 |
136 137
|
syl |
|- ( ph -> O : B --> ( Base ` ( R ^s K ) ) ) |
| 139 |
138 28
|
ffvelcdmd |
|- ( ph -> ( O ` G ) e. ( Base ` ( R ^s K ) ) ) |
| 140 |
131 3 132 9 134 139
|
pwselbas |
|- ( ph -> ( O ` G ) : K --> K ) |
| 141 |
140
|
ffnd |
|- ( ph -> ( O ` G ) Fn K ) |
| 142 |
|
fniniseg |
|- ( ( O ` G ) Fn K -> ( x e. ( `' ( O ` G ) " { .0. } ) <-> ( x e. K /\ ( ( O ` G ) ` x ) = .0. ) ) ) |
| 143 |
141 142
|
syl |
|- ( ph -> ( x e. ( `' ( O ` G ) " { .0. } ) <-> ( x e. K /\ ( ( O ` G ) ` x ) = .0. ) ) ) |
| 144 |
11
|
snssd |
|- ( ph -> { N } C_ K ) |
| 145 |
144
|
sseld |
|- ( ph -> ( x e. { N } -> x e. K ) ) |
| 146 |
145
|
pm4.71rd |
|- ( ph -> ( x e. { N } <-> ( x e. K /\ x e. { N } ) ) ) |
| 147 |
130 143 146
|
3bitr4d |
|- ( ph -> ( x e. ( `' ( O ` G ) " { .0. } ) <-> x e. { N } ) ) |
| 148 |
147
|
eqrdv |
|- ( ph -> ( `' ( O ` G ) " { .0. } ) = { N } ) |
| 149 |
112 55 148
|
3jca |
|- ( ph -> ( G e. U /\ ( D ` G ) = 1 /\ ( `' ( O ` G ) " { .0. } ) = { N } ) ) |