| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1pw.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1pw.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
deg1pw.x |
|- X = ( var1 ` R ) |
| 4 |
|
deg1pw.n |
|- N = ( mulGrp ` P ) |
| 5 |
|
deg1pw.e |
|- .^ = ( .g ` N ) |
| 6 |
2
|
ply1sca |
|- ( R e. NzRing -> R = ( Scalar ` P ) ) |
| 7 |
6
|
adantr |
|- ( ( R e. NzRing /\ F e. NN0 ) -> R = ( Scalar ` P ) ) |
| 8 |
7
|
fveq2d |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( 1r ` R ) = ( 1r ` ( Scalar ` P ) ) ) |
| 9 |
8
|
oveq1d |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) ) |
| 10 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
| 11 |
10
|
adantr |
|- ( ( R e. NzRing /\ F e. NN0 ) -> R e. Ring ) |
| 12 |
2
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 13 |
11 12
|
syl |
|- ( ( R e. NzRing /\ F e. NN0 ) -> P e. LMod ) |
| 14 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 15 |
4 14
|
mgpbas |
|- ( Base ` P ) = ( Base ` N ) |
| 16 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 17 |
4
|
ringmgp |
|- ( P e. Ring -> N e. Mnd ) |
| 18 |
11 16 17
|
3syl |
|- ( ( R e. NzRing /\ F e. NN0 ) -> N e. Mnd ) |
| 19 |
|
simpr |
|- ( ( R e. NzRing /\ F e. NN0 ) -> F e. NN0 ) |
| 20 |
3 2 14
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
| 21 |
11 20
|
syl |
|- ( ( R e. NzRing /\ F e. NN0 ) -> X e. ( Base ` P ) ) |
| 22 |
15 5 18 19 21
|
mulgnn0cld |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( F .^ X ) e. ( Base ` P ) ) |
| 23 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 24 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
| 25 |
|
eqid |
|- ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) |
| 26 |
14 23 24 25
|
lmodvs1 |
|- ( ( P e. LMod /\ ( F .^ X ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) |
| 27 |
13 22 26
|
syl2anc |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) |
| 28 |
9 27
|
eqtrd |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) = ( F .^ X ) ) |
| 29 |
28
|
fveq2d |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) ) = ( D ` ( F .^ X ) ) ) |
| 30 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 31 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 32 |
30 31
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 33 |
11 32
|
syl |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 34 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 35 |
31 34
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 36 |
35
|
adantr |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 37 |
1 30 2 3 24 4 5 34
|
deg1tm |
|- ( ( R e. Ring /\ ( ( 1r ` R ) e. ( Base ` R ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) /\ F e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) ) = F ) |
| 38 |
11 33 36 19 37
|
syl121anc |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( D ` ( ( 1r ` R ) ( .s ` P ) ( F .^ X ) ) ) = F ) |
| 39 |
29 38
|
eqtr3d |
|- ( ( R e. NzRing /\ F e. NN0 ) -> ( D ` ( F .^ X ) ) = F ) |