| Step |
Hyp |
Ref |
Expression |
| 1 |
|
deg1tm.d |
|- D = ( deg1 ` R ) |
| 2 |
|
deg1tm.k |
|- K = ( Base ` R ) |
| 3 |
|
deg1tm.p |
|- P = ( Poly1 ` R ) |
| 4 |
|
deg1tm.x |
|- X = ( var1 ` R ) |
| 5 |
|
deg1tm.m |
|- .x. = ( .s ` P ) |
| 6 |
|
deg1tm.n |
|- N = ( mulGrp ` P ) |
| 7 |
|
deg1tm.e |
|- .^ = ( .g ` N ) |
| 8 |
|
deg1tm.z |
|- .0. = ( 0g ` R ) |
| 9 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 10 |
2 3 4 5 6 7 9
|
ply1tmcl |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) |
| 11 |
10
|
3adant2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( C .x. ( F .^ X ) ) e. ( Base ` P ) ) |
| 12 |
1 3 9
|
deg1xrcl |
|- ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) -> ( D ` ( C .x. ( F .^ X ) ) ) e. RR* ) |
| 13 |
11 12
|
syl |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) e. RR* ) |
| 14 |
|
simp3 |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. NN0 ) |
| 15 |
14
|
nn0red |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. RR ) |
| 16 |
15
|
rexrd |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F e. RR* ) |
| 17 |
1 2 3 4 5 6 7
|
deg1tmle |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) |
| 18 |
17
|
3adant2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) <_ F ) |
| 19 |
8 2 3 4 5 6 7
|
coe1tmfv1 |
|- ( ( R e. Ring /\ C e. K /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) = C ) |
| 20 |
19
|
3adant2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) = C ) |
| 21 |
|
simp2r |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> C =/= .0. ) |
| 22 |
20 21
|
eqnetrd |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) =/= .0. ) |
| 23 |
|
eqid |
|- ( coe1 ` ( C .x. ( F .^ X ) ) ) = ( coe1 ` ( C .x. ( F .^ X ) ) ) |
| 24 |
1 3 9 8 23
|
deg1ge |
|- ( ( ( C .x. ( F .^ X ) ) e. ( Base ` P ) /\ F e. NN0 /\ ( ( coe1 ` ( C .x. ( F .^ X ) ) ) ` F ) =/= .0. ) -> F <_ ( D ` ( C .x. ( F .^ X ) ) ) ) |
| 25 |
11 14 22 24
|
syl3anc |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> F <_ ( D ` ( C .x. ( F .^ X ) ) ) ) |
| 26 |
13 16 18 25
|
xrletrid |
|- ( ( R e. Ring /\ ( C e. K /\ C =/= .0. ) /\ F e. NN0 ) -> ( D ` ( C .x. ( F .^ X ) ) ) = F ) |