Metamath Proof Explorer


Theorem deg1pw

Description: Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1pw.d 𝐷 = ( deg1𝑅 )
deg1pw.p 𝑃 = ( Poly1𝑅 )
deg1pw.x 𝑋 = ( var1𝑅 )
deg1pw.n 𝑁 = ( mulGrp ‘ 𝑃 )
deg1pw.e = ( .g𝑁 )
Assertion deg1pw ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐹 𝑋 ) ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 deg1pw.d 𝐷 = ( deg1𝑅 )
2 deg1pw.p 𝑃 = ( Poly1𝑅 )
3 deg1pw.x 𝑋 = ( var1𝑅 )
4 deg1pw.n 𝑁 = ( mulGrp ‘ 𝑃 )
5 deg1pw.e = ( .g𝑁 )
6 2 ply1sca ( 𝑅 ∈ NzRing → 𝑅 = ( Scalar ‘ 𝑃 ) )
7 6 adantr ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑅 = ( Scalar ‘ 𝑃 ) )
8 7 fveq2d ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 1r𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) ) )
9 8 oveq1d ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) )
10 nzrring ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring )
11 10 adantr ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑅 ∈ Ring )
12 2 ply1lmod ( 𝑅 ∈ Ring → 𝑃 ∈ LMod )
13 11 12 syl ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑃 ∈ LMod )
14 2 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
15 4 ringmgp ( 𝑃 ∈ Ring → 𝑁 ∈ Mnd )
16 11 14 15 3syl ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑁 ∈ Mnd )
17 simpr ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝐹 ∈ ℕ0 )
18 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
19 3 2 18 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
20 11 19 syl ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
21 4 18 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ 𝑁 )
22 21 5 mulgnn0cl ( ( 𝑁 ∈ Mnd ∧ 𝐹 ∈ ℕ0𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝐹 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
23 16 17 20 22 syl3anc ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐹 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
24 eqid ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 )
25 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
26 eqid ( 1r ‘ ( Scalar ‘ 𝑃 ) ) = ( 1r ‘ ( Scalar ‘ 𝑃 ) )
27 18 24 25 26 lmodvs1 ( ( 𝑃 ∈ LMod ∧ ( 𝐹 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) = ( 𝐹 𝑋 ) )
28 13 23 27 syl2anc ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r ‘ ( Scalar ‘ 𝑃 ) ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) = ( 𝐹 𝑋 ) )
29 9 28 eqtrd ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) = ( 𝐹 𝑋 ) )
30 29 fveq2d ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝐹 𝑋 ) ) )
31 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
32 eqid ( 1r𝑅 ) = ( 1r𝑅 )
33 31 32 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
34 11 33 syl ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) )
35 eqid ( 0g𝑅 ) = ( 0g𝑅 )
36 32 35 nzrnz ( 𝑅 ∈ NzRing → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
37 36 adantr ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 1r𝑅 ) ≠ ( 0g𝑅 ) )
38 1 31 2 3 25 4 5 35 deg1tm ( ( 𝑅 ∈ Ring ∧ ( ( 1r𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 1r𝑅 ) ≠ ( 0g𝑅 ) ) ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) ) = 𝐹 )
39 11 34 37 17 38 syl121anc ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( ( 1r𝑅 ) ( ·𝑠𝑃 ) ( 𝐹 𝑋 ) ) ) = 𝐹 )
40 30 39 eqtr3d ( ( 𝑅 ∈ NzRing ∧ 𝐹 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝐹 𝑋 ) ) = 𝐹 )