Description: Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1pw.d | |
|
deg1pw.p | |
||
deg1pw.x | |
||
deg1pw.n | |
||
deg1pw.e | |
||
Assertion | deg1pw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1pw.d | |
|
2 | deg1pw.p | |
|
3 | deg1pw.x | |
|
4 | deg1pw.n | |
|
5 | deg1pw.e | |
|
6 | 2 | ply1sca | |
7 | 6 | adantr | |
8 | 7 | fveq2d | |
9 | 8 | oveq1d | |
10 | nzrring | |
|
11 | 10 | adantr | |
12 | 2 | ply1lmod | |
13 | 11 12 | syl | |
14 | eqid | |
|
15 | 4 14 | mgpbas | |
16 | 2 | ply1ring | |
17 | 4 | ringmgp | |
18 | 11 16 17 | 3syl | |
19 | simpr | |
|
20 | 3 2 14 | vr1cl | |
21 | 11 20 | syl | |
22 | 15 5 18 19 21 | mulgnn0cld | |
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | 14 23 24 25 | lmodvs1 | |
27 | 13 22 26 | syl2anc | |
28 | 9 27 | eqtrd | |
29 | 28 | fveq2d | |
30 | eqid | |
|
31 | eqid | |
|
32 | 30 31 | ringidcl | |
33 | 11 32 | syl | |
34 | eqid | |
|
35 | 31 34 | nzrnz | |
36 | 35 | adantr | |
37 | 1 30 2 3 24 4 5 34 | deg1tm | |
38 | 11 33 36 19 37 | syl121anc | |
39 | 29 38 | eqtr3d | |