Metamath Proof Explorer


Theorem deg1pw

Description: Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1pw.d D=deg1R
deg1pw.p P=Poly1R
deg1pw.x X=var1R
deg1pw.n N=mulGrpP
deg1pw.e ×˙=N
Assertion deg1pw RNzRingF0DF×˙X=F

Proof

Step Hyp Ref Expression
1 deg1pw.d D=deg1R
2 deg1pw.p P=Poly1R
3 deg1pw.x X=var1R
4 deg1pw.n N=mulGrpP
5 deg1pw.e ×˙=N
6 2 ply1sca RNzRingR=ScalarP
7 6 adantr RNzRingF0R=ScalarP
8 7 fveq2d RNzRingF01R=1ScalarP
9 8 oveq1d RNzRingF01RPF×˙X=1ScalarPPF×˙X
10 nzrring RNzRingRRing
11 10 adantr RNzRingF0RRing
12 2 ply1lmod RRingPLMod
13 11 12 syl RNzRingF0PLMod
14 eqid BaseP=BaseP
15 4 14 mgpbas BaseP=BaseN
16 2 ply1ring RRingPRing
17 4 ringmgp PRingNMnd
18 11 16 17 3syl RNzRingF0NMnd
19 simpr RNzRingF0F0
20 3 2 14 vr1cl RRingXBaseP
21 11 20 syl RNzRingF0XBaseP
22 15 5 18 19 21 mulgnn0cld RNzRingF0F×˙XBaseP
23 eqid ScalarP=ScalarP
24 eqid P=P
25 eqid 1ScalarP=1ScalarP
26 14 23 24 25 lmodvs1 PLModF×˙XBaseP1ScalarPPF×˙X=F×˙X
27 13 22 26 syl2anc RNzRingF01ScalarPPF×˙X=F×˙X
28 9 27 eqtrd RNzRingF01RPF×˙X=F×˙X
29 28 fveq2d RNzRingF0D1RPF×˙X=DF×˙X
30 eqid BaseR=BaseR
31 eqid 1R=1R
32 30 31 ringidcl RRing1RBaseR
33 11 32 syl RNzRingF01RBaseR
34 eqid 0R=0R
35 31 34 nzrnz RNzRing1R0R
36 35 adantr RNzRingF01R0R
37 1 30 2 3 24 4 5 34 deg1tm RRing1RBaseR1R0RF0D1RPF×˙X=F
38 11 33 36 19 37 syl121anc RNzRingF0D1RPF×˙X=F
39 29 38 eqtr3d RNzRingF0DF×˙X=F