Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
16 |
|
algextdeglem.r |
|- R = ( rem1p ` K ) |
17 |
|
algextdeglem.h |
|- H = ( p e. U |-> ( p R ( M ` A ) ) ) |
18 |
|
algextdeglem.t |
|- T = ( `' ( deg1 ` K ) " ( -oo [,) ( D ` ( M ` A ) ) ) ) |
19 |
|
algextdeglem.x |
|- ( ph -> X e. U ) |
20 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
21 |
9 20
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
22 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
23 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
24 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
25 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
26 |
6 25
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
27 |
8 1 22 23 24 26
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
28 |
27 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
29 |
|
eqid |
|- { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } = { p e. dom O | ( ( O ` p ) ` A ) = ( 0g ` E ) } |
30 |
|
eqid |
|- ( RSpan ` P ) = ( RSpan ` P ) |
31 |
|
eqid |
|- ( idlGen1p ` ( E |`s F ) ) = ( idlGen1p ` ( E |`s F ) ) |
32 |
8 21 22 5 6 28 23 29 30 31 4
|
minplycl |
|- ( ph -> ( M ` A ) e. ( Base ` P ) ) |
33 |
32 10
|
eleqtrrdi |
|- ( ph -> ( M ` A ) e. U ) |
34 |
1 3 9 10 33 26
|
ressdeg1 |
|- ( ph -> ( D ` ( M ` A ) ) = ( ( deg1 ` K ) ` ( M ` A ) ) ) |
35 |
34
|
breq2d |
|- ( ph -> ( ( ( deg1 ` K ) ` X ) < ( D ` ( M ` A ) ) <-> ( ( deg1 ` K ) ` X ) < ( ( deg1 ` K ) ` ( M ` A ) ) ) ) |
36 |
|
eqid |
|- ( deg1 ` K ) = ( deg1 ` K ) |
37 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
38 |
37
|
drngringd |
|- ( ph -> E e. Ring ) |
39 |
|
eqid |
|- ( Poly1 ` E ) = ( Poly1 ` E ) |
40 |
|
eqid |
|- ( PwSer1 ` K ) = ( PwSer1 ` K ) |
41 |
|
eqid |
|- ( Base ` ( PwSer1 ` K ) ) = ( Base ` ( PwSer1 ` K ) ) |
42 |
|
eqid |
|- ( Base ` ( Poly1 ` E ) ) = ( Base ` ( Poly1 ` E ) ) |
43 |
39 1 9 10 26 40 41 42
|
ressply1bas2 |
|- ( ph -> U = ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) ) |
44 |
|
inss2 |
|- ( ( Base ` ( PwSer1 ` K ) ) i^i ( Base ` ( Poly1 ` E ) ) ) C_ ( Base ` ( Poly1 ` E ) ) |
45 |
43 44
|
eqsstrdi |
|- ( ph -> U C_ ( Base ` ( Poly1 ` E ) ) ) |
46 |
45 33
|
sseldd |
|- ( ph -> ( M ` A ) e. ( Base ` ( Poly1 ` E ) ) ) |
47 |
|
eqid |
|- ( 0g ` ( Poly1 ` E ) ) = ( 0g ` ( Poly1 ` E ) ) |
48 |
47 5 6 4 7
|
irngnminplynz |
|- ( ph -> ( M ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) |
49 |
3 39 47 42
|
deg1nn0cl |
|- ( ( E e. Ring /\ ( M ` A ) e. ( Base ` ( Poly1 ` E ) ) /\ ( M ` A ) =/= ( 0g ` ( Poly1 ` E ) ) ) -> ( D ` ( M ` A ) ) e. NN0 ) |
50 |
38 46 48 49
|
syl3anc |
|- ( ph -> ( D ` ( M ` A ) ) e. NN0 ) |
51 |
|
fldsdrgfld |
|- ( ( E e. Field /\ F e. ( SubDRing ` E ) ) -> ( E |`s F ) e. Field ) |
52 |
5 6 51
|
syl2anc |
|- ( ph -> ( E |`s F ) e. Field ) |
53 |
1 52
|
eqeltrid |
|- ( ph -> K e. Field ) |
54 |
|
fldidom |
|- ( K e. Field -> K e. IDomn ) |
55 |
53 54
|
syl |
|- ( ph -> K e. IDomn ) |
56 |
55
|
idomringd |
|- ( ph -> K e. Ring ) |
57 |
9 36 18 50 56 10
|
ply1degleel |
|- ( ph -> ( X e. T <-> ( X e. U /\ ( ( deg1 ` K ) ` X ) < ( D ` ( M ` A ) ) ) ) ) |
58 |
19 57
|
mpbirand |
|- ( ph -> ( X e. T <-> ( ( deg1 ` K ) ` X ) < ( D ` ( M ` A ) ) ) ) |
59 |
|
eqid |
|- ( Unic1p ` K ) = ( Unic1p ` K ) |
60 |
55
|
idomdomd |
|- ( ph -> K e. Domn ) |
61 |
1
|
fveq2i |
|- ( Monic1p ` K ) = ( Monic1p ` ( E |`s F ) ) |
62 |
47 5 6 4 7 61
|
minplym1p |
|- ( ph -> ( M ` A ) e. ( Monic1p ` K ) ) |
63 |
|
eqid |
|- ( Monic1p ` K ) = ( Monic1p ` K ) |
64 |
59 63
|
mon1puc1p |
|- ( ( K e. Ring /\ ( M ` A ) e. ( Monic1p ` K ) ) -> ( M ` A ) e. ( Unic1p ` K ) ) |
65 |
56 62 64
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( Unic1p ` K ) ) |
66 |
9 10 59 16 36 60 19 65
|
r1pid2 |
|- ( ph -> ( ( X R ( M ` A ) ) = X <-> ( ( deg1 ` K ) ` X ) < ( ( deg1 ` K ) ` ( M ` A ) ) ) ) |
67 |
35 58 66
|
3bitr4d |
|- ( ph -> ( X e. T <-> ( X R ( M ` A ) ) = X ) ) |
68 |
|
oveq1 |
|- ( p = X -> ( p R ( M ` A ) ) = ( X R ( M ` A ) ) ) |
69 |
|
ovexd |
|- ( ph -> ( X R ( M ` A ) ) e. _V ) |
70 |
17 68 19 69
|
fvmptd3 |
|- ( ph -> ( H ` X ) = ( X R ( M ` A ) ) ) |
71 |
70
|
eqeq1d |
|- ( ph -> ( ( H ` X ) = X <-> ( X R ( M ` A ) ) = X ) ) |
72 |
67 71
|
bitr4d |
|- ( ph -> ( X e. T <-> ( H ` X ) = X ) ) |