| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1pid2.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1pid2.u |
|- U = ( Base ` P ) |
| 3 |
|
r1pid2.n |
|- N = ( Unic1p ` R ) |
| 4 |
|
r1pid2.e |
|- E = ( rem1p ` R ) |
| 5 |
|
r1pid2.d |
|- D = ( deg1 ` R ) |
| 6 |
|
r1pid2.r |
|- ( ph -> R e. Domn ) |
| 7 |
|
r1pid2.a |
|- ( ph -> A e. U ) |
| 8 |
|
r1pid2.b |
|- ( ph -> B e. N ) |
| 9 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 10 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 11 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 12 |
6 11
|
syl |
|- ( ph -> R e. Ring ) |
| 13 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
| 14 |
13 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A ( quot1p ` R ) B ) e. U ) |
| 15 |
12 7 8 14
|
syl3anc |
|- ( ph -> ( A ( quot1p ` R ) B ) e. U ) |
| 16 |
1 2 3
|
uc1pcl |
|- ( B e. N -> B e. U ) |
| 17 |
8 16
|
syl |
|- ( ph -> B e. U ) |
| 18 |
1 9 3
|
uc1pn0 |
|- ( B e. N -> B =/= ( 0g ` P ) ) |
| 19 |
8 18
|
syl |
|- ( ph -> B =/= ( 0g ` P ) ) |
| 20 |
17 19
|
eldifsnd |
|- ( ph -> B e. ( U \ { ( 0g ` P ) } ) ) |
| 21 |
1
|
ply1domn |
|- ( R e. Domn -> P e. Domn ) |
| 22 |
6 21
|
syl |
|- ( ph -> P e. Domn ) |
| 23 |
2 9 10 15 20 22
|
domneq0r |
|- ( ph -> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
| 24 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 25 |
1 2 3 13 4 10 24
|
r1pid |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> A = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
| 26 |
12 7 8 25
|
syl3anc |
|- ( ph -> A = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
| 27 |
26
|
eqeq2d |
|- ( ph -> ( ( A E B ) = A <-> ( A E B ) = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) ) |
| 28 |
|
eqcom |
|- ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) <-> ( A E B ) = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
| 29 |
27 28
|
bitr4di |
|- ( ph -> ( ( A E B ) = A <-> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) ) |
| 30 |
|
domnring |
|- ( P e. Domn -> P e. Ring ) |
| 31 |
22 30
|
syl |
|- ( ph -> P e. Ring ) |
| 32 |
31
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 33 |
4 1 2 3
|
r1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A E B ) e. U ) |
| 34 |
12 7 8 33
|
syl3anc |
|- ( ph -> ( A E B ) e. U ) |
| 35 |
2 24 9 32 34
|
grplidd |
|- ( ph -> ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) |
| 36 |
35
|
eqeq2d |
|- ( ph -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) ) |
| 37 |
2 10 31 15 17
|
ringcld |
|- ( ph -> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) e. U ) |
| 38 |
2 9
|
ring0cl |
|- ( P e. Ring -> ( 0g ` P ) e. U ) |
| 39 |
31 38
|
syl |
|- ( ph -> ( 0g ` P ) e. U ) |
| 40 |
2 24
|
grprcan |
|- ( ( P e. Grp /\ ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) e. U /\ ( 0g ` P ) e. U /\ ( A E B ) e. U ) ) -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
| 41 |
32 37 39 34 40
|
syl13anc |
|- ( ph -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
| 42 |
29 36 41
|
3bitr2d |
|- ( ph -> ( ( A E B ) = A <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
| 43 |
2 10 9 31 17
|
ringlzd |
|- ( ph -> ( ( 0g ` P ) ( .r ` P ) B ) = ( 0g ` P ) ) |
| 44 |
43
|
oveq2d |
|- ( ph -> ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) = ( A ( -g ` P ) ( 0g ` P ) ) ) |
| 45 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 46 |
2 9 45
|
grpsubid1 |
|- ( ( P e. Grp /\ A e. U ) -> ( A ( -g ` P ) ( 0g ` P ) ) = A ) |
| 47 |
32 7 46
|
syl2anc |
|- ( ph -> ( A ( -g ` P ) ( 0g ` P ) ) = A ) |
| 48 |
44 47
|
eqtr2d |
|- ( ph -> A = ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) |
| 49 |
48
|
fveq2d |
|- ( ph -> ( D ` A ) = ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) ) |
| 50 |
49
|
breq1d |
|- ( ph -> ( ( D ` A ) < ( D ` B ) <-> ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) ) |
| 51 |
39
|
biantrurd |
|- ( ph -> ( ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) <-> ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) ) ) |
| 52 |
13 1 2 5 45 10 3
|
q1peqb |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
| 53 |
12 7 8 52
|
syl3anc |
|- ( ph -> ( ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
| 54 |
50 51 53
|
3bitrd |
|- ( ph -> ( ( D ` A ) < ( D ` B ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
| 55 |
23 42 54
|
3bitr4d |
|- ( ph -> ( ( A E B ) = A <-> ( D ` A ) < ( D ` B ) ) ) |