| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domneq0r.b |
|- B = ( Base ` R ) |
| 2 |
|
domneq0r.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
domneq0r.m |
|- .x. = ( .r ` R ) |
| 4 |
|
domneq0r.x |
|- ( ph -> X e. B ) |
| 5 |
|
domneq0r.y |
|- ( ph -> Y e. ( B \ { .0. } ) ) |
| 6 |
|
domneq0r.r |
|- ( ph -> R e. Domn ) |
| 7 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 8 |
6 7
|
syl |
|- ( ph -> R e. Ring ) |
| 9 |
5
|
eldifad |
|- ( ph -> Y e. B ) |
| 10 |
1 3 2 8 9
|
ringlzd |
|- ( ph -> ( .0. .x. Y ) = .0. ) |
| 11 |
10
|
eqeq2d |
|- ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> ( X .x. Y ) = .0. ) ) |
| 12 |
1 2
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 13 |
8 12
|
syl |
|- ( ph -> .0. e. B ) |
| 14 |
1 2 3 4 13 5 6
|
domnrcanb |
|- ( ph -> ( ( X .x. Y ) = ( .0. .x. Y ) <-> X = .0. ) ) |
| 15 |
11 14
|
bitr3d |
|- ( ph -> ( ( X .x. Y ) = .0. <-> X = .0. ) ) |