| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnrcan.b |
|- B = ( Base ` R ) |
| 2 |
|
domnrcan.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
domnrcan.m |
|- .x. = ( .r ` R ) |
| 4 |
|
domnrcan.x |
|- ( ph -> X e. B ) |
| 5 |
|
domnrcan.y |
|- ( ph -> Y e. B ) |
| 6 |
|
domnrcan.z |
|- ( ph -> Z e. ( B \ { .0. } ) ) |
| 7 |
|
domnrcan.r |
|- ( ph -> R e. Domn ) |
| 8 |
|
oveq1 |
|- ( a = X -> ( a .x. c ) = ( X .x. c ) ) |
| 9 |
8
|
eqeq1d |
|- ( a = X -> ( ( a .x. c ) = ( b .x. c ) <-> ( X .x. c ) = ( b .x. c ) ) ) |
| 10 |
|
eqeq1 |
|- ( a = X -> ( a = b <-> X = b ) ) |
| 11 |
9 10
|
imbi12d |
|- ( a = X -> ( ( ( a .x. c ) = ( b .x. c ) -> a = b ) <-> ( ( X .x. c ) = ( b .x. c ) -> X = b ) ) ) |
| 12 |
|
oveq1 |
|- ( b = Y -> ( b .x. c ) = ( Y .x. c ) ) |
| 13 |
12
|
eqeq2d |
|- ( b = Y -> ( ( X .x. c ) = ( b .x. c ) <-> ( X .x. c ) = ( Y .x. c ) ) ) |
| 14 |
|
eqeq2 |
|- ( b = Y -> ( X = b <-> X = Y ) ) |
| 15 |
13 14
|
imbi12d |
|- ( b = Y -> ( ( ( X .x. c ) = ( b .x. c ) -> X = b ) <-> ( ( X .x. c ) = ( Y .x. c ) -> X = Y ) ) ) |
| 16 |
|
oveq2 |
|- ( c = Z -> ( X .x. c ) = ( X .x. Z ) ) |
| 17 |
|
oveq2 |
|- ( c = Z -> ( Y .x. c ) = ( Y .x. Z ) ) |
| 18 |
16 17
|
eqeq12d |
|- ( c = Z -> ( ( X .x. c ) = ( Y .x. c ) <-> ( X .x. Z ) = ( Y .x. Z ) ) ) |
| 19 |
18
|
imbi1d |
|- ( c = Z -> ( ( ( X .x. c ) = ( Y .x. c ) -> X = Y ) <-> ( ( X .x. Z ) = ( Y .x. Z ) -> X = Y ) ) ) |
| 20 |
1 2 3
|
isdomn4r |
|- ( R e. Domn <-> ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) ) |
| 21 |
7 20
|
sylib |
|- ( ph -> ( R e. NzRing /\ A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) ) |
| 22 |
21
|
simprd |
|- ( ph -> A. a e. B A. b e. B A. c e. ( B \ { .0. } ) ( ( a .x. c ) = ( b .x. c ) -> a = b ) ) |
| 23 |
11 15 19 22 4 5 6
|
rspc3dv |
|- ( ph -> ( ( X .x. Z ) = ( Y .x. Z ) -> X = Y ) ) |
| 24 |
|
oveq1 |
|- ( X = Y -> ( X .x. Z ) = ( Y .x. Z ) ) |
| 25 |
23 24
|
impbid1 |
|- ( ph -> ( ( X .x. Z ) = ( Y .x. Z ) <-> X = Y ) ) |