Description: Right-cancellation law for domains. (Contributed by SN, 21-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | domnrcan.b | |- B = ( Base ` R ) | |
| domnrcan.0 | |- .0. = ( 0g ` R ) | ||
| domnrcan.m | |- .x. = ( .r ` R ) | ||
| domnrcan.x | |- ( ph -> X e. B ) | ||
| domnrcan.y | |- ( ph -> Y e. B ) | ||
| domnrcan.z | |- ( ph -> Z e. ( B \ { .0. } ) ) | ||
| domnrcan.r | |- ( ph -> R e. Domn ) | ||
| domnrcan.1 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) | ||
| Assertion | domnrcan | |- ( ph -> X = Y ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | domnrcan.b | |- B = ( Base ` R ) | |
| 2 | domnrcan.0 | |- .0. = ( 0g ` R ) | |
| 3 | domnrcan.m | |- .x. = ( .r ` R ) | |
| 4 | domnrcan.x | |- ( ph -> X e. B ) | |
| 5 | domnrcan.y | |- ( ph -> Y e. B ) | |
| 6 | domnrcan.z |  |-  ( ph -> Z e. ( B \ { .0. } ) ) | |
| 7 | domnrcan.r | |- ( ph -> R e. Domn ) | |
| 8 | domnrcan.1 | |- ( ph -> ( X .x. Z ) = ( Y .x. Z ) ) | |
| 9 | 1 2 3 4 5 6 7 | domnrcanb | |- ( ph -> ( ( X .x. Z ) = ( Y .x. Z ) <-> X = Y ) ) | 
| 10 | 8 9 | mpbid | |- ( ph -> X = Y ) |