| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domneq0r.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
domneq0r.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
domneq0r.m |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
domneq0r.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
domneq0r.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) |
| 6 |
|
domneq0r.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 7 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 9 |
5
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
1 3 2 8 9
|
ringlzd |
⊢ ( 𝜑 → ( 0 · 𝑌 ) = 0 ) |
| 11 |
10
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ↔ ( 𝑋 · 𝑌 ) = 0 ) ) |
| 12 |
1 2
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 13 |
8 12
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 14 |
1 2 3 4 13 5 6
|
domnrcanb |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = ( 0 · 𝑌 ) ↔ 𝑋 = 0 ) ) |
| 15 |
11 14
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑋 = 0 ) ) |