| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1lpir.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
fldidom |
|- ( R e. Field -> R e. IDomn ) |
| 3 |
1
|
ply1idom |
|- ( R e. IDomn -> P e. IDomn ) |
| 4 |
2 3
|
syl |
|- ( R e. Field -> P e. IDomn ) |
| 5 |
|
isfld |
|- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
| 6 |
5
|
simplbi |
|- ( R e. Field -> R e. DivRing ) |
| 7 |
1
|
ply1lpir |
|- ( R e. DivRing -> P e. LPIR ) |
| 8 |
6 7
|
syl |
|- ( R e. Field -> P e. LPIR ) |
| 9 |
|
df-pid |
|- PID = ( IDomn i^i LPIR ) |
| 10 |
9
|
elin2 |
|- ( P e. PID <-> ( P e. IDomn /\ P e. LPIR ) ) |
| 11 |
4 8 10
|
sylanbrc |
|- ( R e. Field -> P e. PID ) |