Description: The polynomials over a field are a PID. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ply1lpir.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| Assertion | ply1pid | ⊢ ( 𝑅 ∈ Field → 𝑃 ∈ PID ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1lpir.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | fldidom | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) | |
| 3 | 1 | ply1idom | ⊢ ( 𝑅 ∈ IDomn → 𝑃 ∈ IDomn ) |
| 4 | 2 3 | syl | ⊢ ( 𝑅 ∈ Field → 𝑃 ∈ IDomn ) |
| 5 | isfld | ⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) | |
| 6 | 5 | simplbi | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) |
| 7 | 1 | ply1lpir | ⊢ ( 𝑅 ∈ DivRing → 𝑃 ∈ LPIR ) |
| 8 | 6 7 | syl | ⊢ ( 𝑅 ∈ Field → 𝑃 ∈ LPIR ) |
| 9 | df-pid | ⊢ PID = ( IDomn ∩ LPIR ) | |
| 10 | 9 | elin2 | ⊢ ( 𝑃 ∈ PID ↔ ( 𝑃 ∈ IDomn ∧ 𝑃 ∈ LPIR ) ) |
| 11 | 4 8 10 | sylanbrc | ⊢ ( 𝑅 ∈ Field → 𝑃 ∈ PID ) |