| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmcoeq |
|- ( dom `' B = ran `' A -> dom ( `' B o. `' A ) = dom `' A ) |
| 2 |
|
eqcom |
|- ( dom A = ran B <-> ran B = dom A ) |
| 3 |
|
df-rn |
|- ran B = dom `' B |
| 4 |
|
dfdm4 |
|- dom A = ran `' A |
| 5 |
3 4
|
eqeq12i |
|- ( ran B = dom A <-> dom `' B = ran `' A ) |
| 6 |
2 5
|
bitri |
|- ( dom A = ran B <-> dom `' B = ran `' A ) |
| 7 |
|
df-rn |
|- ran ( A o. B ) = dom `' ( A o. B ) |
| 8 |
|
cnvco |
|- `' ( A o. B ) = ( `' B o. `' A ) |
| 9 |
8
|
dmeqi |
|- dom `' ( A o. B ) = dom ( `' B o. `' A ) |
| 10 |
7 9
|
eqtri |
|- ran ( A o. B ) = dom ( `' B o. `' A ) |
| 11 |
|
df-rn |
|- ran A = dom `' A |
| 12 |
10 11
|
eqeq12i |
|- ( ran ( A o. B ) = ran A <-> dom ( `' B o. `' A ) = dom `' A ) |
| 13 |
1 6 12
|
3imtr4i |
|- ( dom A = ran B -> ran ( A o. B ) = ran A ) |