| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmcoeq | 
							⊢ ( dom  ◡ 𝐵  =  ran  ◡ 𝐴  →  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 )  =  dom  ◡ 𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							eqcom | 
							⊢ ( dom  𝐴  =  ran  𝐵  ↔  ran  𝐵  =  dom  𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							df-rn | 
							⊢ ran  𝐵  =  dom  ◡ 𝐵  | 
						
						
							| 4 | 
							
								
							 | 
							dfdm4 | 
							⊢ dom  𝐴  =  ran  ◡ 𝐴  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeq12i | 
							⊢ ( ran  𝐵  =  dom  𝐴  ↔  dom  ◡ 𝐵  =  ran  ◡ 𝐴 )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							bitri | 
							⊢ ( dom  𝐴  =  ran  𝐵  ↔  dom  ◡ 𝐵  =  ran  ◡ 𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							df-rn | 
							⊢ ran  ( 𝐴  ∘  𝐵 )  =  dom  ◡ ( 𝐴  ∘  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							cnvco | 
							⊢ ◡ ( 𝐴  ∘  𝐵 )  =  ( ◡ 𝐵  ∘  ◡ 𝐴 )  | 
						
						
							| 9 | 
							
								8
							 | 
							dmeqi | 
							⊢ dom  ◡ ( 𝐴  ∘  𝐵 )  =  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqtri | 
							⊢ ran  ( 𝐴  ∘  𝐵 )  =  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							df-rn | 
							⊢ ran  𝐴  =  dom  ◡ 𝐴  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeq12i | 
							⊢ ( ran  ( 𝐴  ∘  𝐵 )  =  ran  𝐴  ↔  dom  ( ◡ 𝐵  ∘  ◡ 𝐴 )  =  dom  ◡ 𝐴 )  | 
						
						
							| 13 | 
							
								1 6 12
							 | 
							3imtr4i | 
							⊢ ( dom  𝐴  =  ran  𝐵  →  ran  ( 𝐴  ∘  𝐵 )  =  ran  𝐴 )  |