Metamath Proof Explorer


Theorem rnrhmsubrg

Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023)

Ref Expression
Assertion rnrhmsubrg FMRingHomNranFSubRingN

Proof

Step Hyp Ref Expression
1 df-ima FBaseM=ranFBaseM
2 eqid BaseM=BaseM
3 eqid BaseN=BaseN
4 2 3 rhmf FMRingHomNF:BaseMBaseN
5 4 ffnd FMRingHomNFFnBaseM
6 fnresdm FFnBaseMFBaseM=F
7 5 6 syl FMRingHomNFBaseM=F
8 7 rneqd FMRingHomNranFBaseM=ranF
9 1 8 eqtr2id FMRingHomNranF=FBaseM
10 rhmrcl1 FMRingHomNMRing
11 2 subrgid MRingBaseMSubRingM
12 10 11 syl FMRingHomNBaseMSubRingM
13 rhmima FMRingHomNBaseMSubRingMFBaseMSubRingN
14 12 13 mpdan FMRingHomNFBaseMSubRingN
15 9 14 eqeltrd FMRingHomNranFSubRingN