Metamath Proof Explorer


Theorem algextdeglem1

Description: Lemma for algextdeg . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K=E𝑠F
algextdeg.l No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
algextdeg.d D=deg1E
algextdeg.m No typesetting found for |- M = ( E minPoly F ) with typecode |-
algextdeg.f φEField
algextdeg.e φFSubDRingE
algextdeg.a φAEIntgRingF
Assertion algextdeglem1 φL𝑠F=K

Proof

Step Hyp Ref Expression
1 algextdeg.k K=E𝑠F
2 algextdeg.l Could not format L = ( E |`s ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
3 algextdeg.d D=deg1E
4 algextdeg.m Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
5 algextdeg.f φEField
6 algextdeg.e φFSubDRingE
7 algextdeg.a φAEIntgRingF
8 2 oveq1i Could not format ( L |`s F ) = ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) : No typesetting found for |- ( L |`s F ) = ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) with typecode |-
9 ovex Could not format ( E fldGen ( F u. { A } ) ) e. _V : No typesetting found for |- ( E fldGen ( F u. { A } ) ) e. _V with typecode |-
10 eqid BaseE=BaseE
11 issdrg FSubDRingEEDivRingFSubRingEE𝑠FDivRing
12 6 11 sylib φEDivRingFSubRingEE𝑠FDivRing
13 12 simp1d φEDivRing
14 12 simp2d φFSubRingE
15 subrgsubg FSubRingEFSubGrpE
16 10 subgss FSubGrpEFBaseE
17 14 15 16 3syl φFBaseE
18 eqid EevalSub1F=EevalSub1F
19 eqid 0E=0E
20 5 fldcrngd φECRing
21 18 1 10 19 20 14 irngssv φEIntgRingFBaseE
22 21 7 sseldd φABaseE
23 22 snssd φABaseE
24 17 23 unssd φFABaseE
25 10 13 24 fldgenssid Could not format ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) with typecode |-
26 25 unssad Could not format ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) with typecode |-
27 ressabs Could not format ( ( ( E fldGen ( F u. { A } ) ) e. _V /\ F C_ ( E fldGen ( F u. { A } ) ) ) -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) = ( E |`s F ) ) : No typesetting found for |- ( ( ( E fldGen ( F u. { A } ) ) e. _V /\ F C_ ( E fldGen ( F u. { A } ) ) ) -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) = ( E |`s F ) ) with typecode |-
28 9 26 27 sylancr Could not format ( ph -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) = ( E |`s F ) ) : No typesetting found for |- ( ph -> ( ( E |`s ( E fldGen ( F u. { A } ) ) ) |`s F ) = ( E |`s F ) ) with typecode |-
29 8 28 eqtrid φL𝑠F=E𝑠F
30 29 1 eqtr4di φL𝑠F=K