Metamath Proof Explorer


Theorem fldgenfld

Description: A generated subfield is a field. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenfld.1 B = Base F
fldgenfld.2 φ F Field
fldgenfld.3 φ S B
Assertion fldgenfld φ F 𝑠 F fldGen S Field

Proof

Step Hyp Ref Expression
1 fldgenfld.1 B = Base F
2 fldgenfld.2 φ F Field
3 fldgenfld.3 φ S B
4 isfld F Field F DivRing F CRing
5 2 4 sylib φ F DivRing F CRing
6 5 simpld φ F DivRing
7 1 6 3 fldgensdrg φ F fldGen S SubDRing F
8 fldsdrgfld F Field F fldGen S SubDRing F F 𝑠 F fldGen S Field
9 2 7 8 syl2anc φ F 𝑠 F fldGen S Field