Step |
Hyp |
Ref |
Expression |
1 |
|
fompt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
2 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
3 |
1 2
|
nfcxfr |
⊢ Ⅎ 𝑥 𝐹 |
4 |
3
|
dffo3f |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
5 |
4
|
simplbi |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
1
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
6
|
bicomi |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
8 |
7
|
biimpi |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
9 |
5 8
|
syl |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
10 |
3
|
foelrnf |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
13 |
3 11 12
|
nffo |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 –onto→ 𝐵 |
14 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
15 |
|
simpr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
16 |
9
|
r19.21bi |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
17 |
1
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
20 |
14 19
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → 𝑦 = 𝐶 ) |
21 |
20
|
ex |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝐶 ) ) |
22 |
21
|
ex |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → 𝑦 = 𝐶 ) ) ) |
23 |
13 22
|
reximdai |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
25 |
10 24
|
mpd |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
26 |
25
|
ralrimiva |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
27 |
9 26
|
jca |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
28 |
6
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
29 |
28
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
30 |
|
nfv |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
31 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 |
32 |
30 31
|
nfan |
⊢ Ⅎ 𝑦 ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
33 |
|
simpll |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
34 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
35 |
34
|
adantll |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
36 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
37 |
|
simp3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝑦 = 𝐶 ) |
38 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
39 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
40 |
38 39 17
|
syl2anc |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
41 |
40
|
eqcomd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
42 |
41
|
3adant3 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐶 = ( 𝐹 ‘ 𝑥 ) ) |
43 |
37 42
|
eqtrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
44 |
43
|
3exp |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) ) |
45 |
36 44
|
reximdai |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
46 |
45
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
47 |
33 35 46
|
syl2anc |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
48 |
47
|
ex |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
49 |
32 48
|
ralrimi |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
50 |
29 49
|
jca |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
51 |
50 4
|
sylibr |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
52 |
27 51
|
impbii |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |